{-# LANGUAGE CPP #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE EmptyDataDeriving #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE NoImplicitPrelude #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE TypeSynonymInstances #-}
{-# LANGUAGE UndecidableInstances #-}
-----------------------------------------------------------------------------
-- |
-- Module : GHC.Generics
-- Copyright : (c) Universiteit Utrecht 2010-2011, University of Oxford 2012-2014
-- License : see libraries/base/LICENSE
--
-- Maintainer : libraries@haskell.org
-- Stability : internal
-- Portability : non-portable
--
-- @since 4.6.0.0
--
-- If you're using @GHC.Generics@, you should consider using the
-- <http://hackage.haskell.org/package/generic-deriving> package, which
-- contains many useful generic functions.
module GHC.Generics (
-- * Introduction
--
-- |
--
-- Datatype-generic functions are based on the idea of converting values of
-- a datatype @T@ into corresponding values of a (nearly) isomorphic type @'Rep' T@.
-- The type @'Rep' T@ is
-- built from a limited set of type constructors, all provided by this module. A
-- datatype-generic function is then an overloaded function with instances
-- for most of these type constructors, together with a wrapper that performs
-- the mapping between @T@ and @'Rep' T@. By using this technique, we merely need
-- a few generic instances in order to implement functionality that works for any
-- representable type.
--
-- Representable types are collected in the 'Generic' class, which defines the
-- associated type 'Rep' as well as conversion functions 'from' and 'to'.
-- Typically, you will not define 'Generic' instances by hand, but have the compiler
-- derive them for you.
-- ** Representing datatypes
--
-- |
--
-- The key to defining your own datatype-generic functions is to understand how to
-- represent datatypes using the given set of type constructors.
--
-- Let us look at an example first:
--
-- @
-- data Tree a = Leaf a | Node (Tree a) (Tree a)
-- deriving 'Generic'
-- @
--
-- The above declaration (which requires the language pragma @DeriveGeneric@)
-- causes the following representation to be generated:
--
-- @
-- instance 'Generic' (Tree a) where
-- type 'Rep' (Tree a) =
-- 'D1' ('MetaData \"Tree\" \"Main\" \"package-name\" 'False)
-- ('C1' ('MetaCons \"Leaf\" 'PrefixI 'False)
-- ('S1' ('MetaSel 'Nothing
-- 'NoSourceUnpackedness
-- 'NoSourceStrictness
-- 'DecidedLazy)
-- ('Rec0' a))
-- ':+:'
-- 'C1' ('MetaCons \"Node\" 'PrefixI 'False)
-- ('S1' ('MetaSel 'Nothing
-- 'NoSourceUnpackedness
-- 'NoSourceStrictness
-- 'DecidedLazy)
-- ('Rec0' (Tree a))
-- ':*:'
-- 'S1' ('MetaSel 'Nothing
-- 'NoSourceUnpackedness
-- 'NoSourceStrictness
-- 'DecidedLazy)
-- ('Rec0' (Tree a))))
-- ...
-- @
--
-- /Hint:/ You can obtain information about the code being generated from GHC by passing
-- the @-ddump-deriv@ flag. In GHCi, you can expand a type family such as 'Rep' using
-- the @:kind!@ command.
--
-- This is a lot of information! However, most of it is actually merely meta-information
-- that makes names of datatypes and constructors and more available on the type level.
--
-- Here is a reduced representation for @Tree@ with nearly all meta-information removed,
-- for now keeping only the most essential aspects:
--
-- @
-- instance 'Generic' (Tree a) where
-- type 'Rep' (Tree a) =
-- 'Rec0' a
-- ':+:'
-- ('Rec0' (Tree a) ':*:' 'Rec0' (Tree a))
-- @
--
-- The @Tree@ datatype has two constructors. The representation of individual constructors
-- is combined using the binary type constructor ':+:'.
--
-- The first constructor consists of a single field, which is the parameter @a@. This is
-- represented as @'Rec0' a@.
--
-- The second constructor consists of two fields. Each is a recursive field of type @Tree a@,
-- represented as @'Rec0' (Tree a)@. Representations of individual fields are combined using
-- the binary type constructor ':*:'.
--
-- Now let us explain the additional tags being used in the complete representation:
--
-- * The @'S1' ('MetaSel 'Nothing 'NoSourceUnpackedness 'NoSourceStrictness
-- 'DecidedLazy)@ tag indicates several things. The @'Nothing@ indicates
-- that there is no record field selector associated with this field of
-- the constructor (if there were, it would have been marked @'Just
-- \"recordName\"@ instead). The other types contain meta-information on
-- the field's strictness:
--
-- * There is no @{\-\# UNPACK \#-\}@ or @{\-\# NOUNPACK \#-\}@ annotation
-- in the source, so it is tagged with @'NoSourceUnpackedness@.
--
-- * There is no strictness (@!@) or laziness (@~@) annotation in the
-- source, so it is tagged with @'NoSourceStrictness@.
--
-- * The compiler infers that the field is lazy, so it is tagged with
-- @'DecidedLazy@. Bear in mind that what the compiler decides may be
-- quite different from what is written in the source. See
-- 'DecidedStrictness' for a more detailed explanation.
--
-- The @'MetaSel@ type is also an instance of the type class 'Selector',
-- which can be used to obtain information about the field at the value
-- level.
--
-- * The @'C1' ('MetaCons \"Leaf\" 'PrefixI 'False)@ and
-- @'C1' ('MetaCons \"Node\" 'PrefixI 'False)@ invocations indicate that the enclosed part is
-- the representation of the first and second constructor of datatype @Tree@, respectively.
-- Here, the meta-information regarding constructor names, fixity and whether
-- it has named fields or not is encoded at the type level. The @'MetaCons@
-- type is also an instance of the type class 'Constructor'. This type class can be used
-- to obtain information about the constructor at the value level.
--
-- * The @'D1' ('MetaData \"Tree\" \"Main\" \"package-name\" 'False)@ tag
-- indicates that the enclosed part is the representation of the
-- datatype @Tree@. Again, the meta-information is encoded at the type level.
-- The @'MetaData@ type is an instance of class 'Datatype', which
-- can be used to obtain the name of a datatype, the module it has been
-- defined in, the package it is located under, and whether it has been
-- defined using @data@ or @newtype@ at the value level.
-- ** Derived and fundamental representation types
--
-- |
--
-- There are many datatype-generic functions that do not distinguish between positions that
-- are parameters or positions that are recursive calls. There are also many datatype-generic
-- functions that do not care about the names of datatypes and constructors at all. To keep
-- the number of cases to consider in generic functions in such a situation to a minimum,
-- it turns out that many of the type constructors introduced above are actually synonyms,
-- defining them to be variants of a smaller set of constructors.
-- *** Individual fields of constructors: 'K1'
--
-- |
--
-- The type constructor 'Rec0' is a variant of 'K1':
--
-- @
-- type 'Rec0' = 'K1' 'R'
-- @
--
-- Here, 'R' is a type-level proxy that does not have any associated values.
--
-- There used to be another variant of 'K1' (namely @Par0@), but it has since
-- been deprecated.
-- *** Meta information: 'M1'
--
-- |
--
-- The type constructors 'S1', 'C1' and 'D1' are all variants of 'M1':
--
-- @
-- type 'S1' = 'M1' 'S'
-- type 'C1' = 'M1' 'C'
-- type 'D1' = 'M1' 'D'
-- @
--
-- The types 'S', 'C' and 'D' are once again type-level proxies, just used to create
-- several variants of 'M1'.
-- *** Additional generic representation type constructors
--
-- |
--
-- Next to 'K1', 'M1', ':+:' and ':*:' there are a few more type constructors that occur
-- in the representations of other datatypes.
-- **** Empty datatypes: 'V1'
--
-- |
--
-- For empty datatypes, 'V1' is used as a representation. For example,
--
-- @
-- data Empty deriving 'Generic'
-- @
--
-- yields
--
-- @
-- instance 'Generic' Empty where
-- type 'Rep' Empty =
-- 'D1' ('MetaData \"Empty\" \"Main\" \"package-name\" 'False) 'V1'
-- @
-- **** Constructors without fields: 'U1'
--
-- |
--
-- If a constructor has no arguments, then 'U1' is used as its representation. For example
-- the representation of 'Bool' is
--
-- @
-- instance 'Generic' Bool where
-- type 'Rep' Bool =
-- 'D1' ('MetaData \"Bool\" \"Data.Bool\" \"package-name\" 'False)
-- ('C1' ('MetaCons \"False\" 'PrefixI 'False) 'U1' ':+:' 'C1' ('MetaCons \"True\" 'PrefixI 'False) 'U1')
-- @
-- *** Representation of types with many constructors or many fields
--
-- |
--
-- As ':+:' and ':*:' are just binary operators, one might ask what happens if the
-- datatype has more than two constructors, or a constructor with more than two
-- fields. The answer is simple: the operators are used several times, to combine
-- all the constructors and fields as needed. However, users /should not rely on
-- a specific nesting strategy/ for ':+:' and ':*:' being used. The compiler is
-- free to choose any nesting it prefers. (In practice, the current implementation
-- tries to produce a more-or-less balanced nesting, so that the traversal of
-- the structure of the datatype from the root to a particular component can be
-- performed in logarithmic rather than linear time.)
-- ** Defining datatype-generic functions
--
-- |
--
-- A datatype-generic function comprises two parts:
--
-- 1. /Generic instances/ for the function, implementing it for most of the representation
-- type constructors introduced above.
--
-- 2. A /wrapper/ that for any datatype that is in `Generic`, performs the conversion
-- between the original value and its `Rep`-based representation and then invokes the
-- generic instances.
--
-- As an example, let us look at a function @encode@ that produces a naive, but lossless
-- bit encoding of values of various datatypes. So we are aiming to define a function
--
-- @
-- encode :: 'Generic' a => a -> [Bool]
-- @
--
-- where we use 'Bool' as our datatype for bits.
--
-- For part 1, we define a class @Encode'@. Perhaps surprisingly, this class is parameterized
-- over a type constructor @f@ of kind @* -> *@. This is a technicality: all the representation
-- type constructors operate with kind @* -> *@ as base kind. But the type argument is never
-- being used. This may be changed at some point in the future. The class has a single method,
-- and we use the type we want our final function to have, but we replace the occurrences of
-- the generic type argument @a@ with @f p@ (where the @p@ is any argument; it will not be used).
--
-- > class Encode' f where
-- > encode' :: f p -> [Bool]
--
-- With the goal in mind to make @encode@ work on @Tree@ and other datatypes, we now define
-- instances for the representation type constructors 'V1', 'U1', ':+:', ':*:', 'K1', and 'M1'.
-- *** Definition of the generic representation types
--
-- |
--
-- In order to be able to do this, we need to know the actual definitions of these types:
--
-- @
-- data 'V1' p -- lifted version of Empty
-- data 'U1' p = 'U1' -- lifted version of ()
-- data (':+:') f g p = 'L1' (f p) | 'R1' (g p) -- lifted version of 'Either'
-- data (':*:') f g p = (f p) ':*:' (g p) -- lifted version of (,)
-- newtype 'K1' i c p = 'K1' { 'unK1' :: c } -- a container for a c
-- newtype 'M1' i t f p = 'M1' { 'unM1' :: f p } -- a wrapper
-- @
--
-- So, 'U1' is just the unit type, ':+:' is just a binary choice like 'Either',
-- ':*:' is a binary pair like the pair constructor @(,)@, and 'K1' is a value
-- of a specific type @c@, and 'M1' wraps a value of the generic type argument,
-- which in the lifted world is an @f p@ (where we do not care about @p@).
-- *** Generic instances
--
-- |
--
-- The instance for 'V1' is slightly awkward (but also rarely used):
--
-- @
-- instance Encode' 'V1' where
-- encode' x = undefined
-- @
--
-- There are no values of type @V1 p@ to pass (except undefined), so this is
-- actually impossible. One can ask why it is useful to define an instance for
-- 'V1' at all in this case? Well, an empty type can be used as an argument to
-- a non-empty type, and you might still want to encode the resulting type.
-- As a somewhat contrived example, consider @[Empty]@, which is not an empty
-- type, but contains just the empty list. The 'V1' instance ensures that we
-- can call the generic function on such types.
--
-- There is exactly one value of type 'U1', so encoding it requires no
-- knowledge, and we can use zero bits:
--
-- @
-- instance Encode' 'U1' where
-- encode' 'U1' = []
-- @
--
-- In the case for ':+:', we produce 'False' or 'True' depending on whether
-- the constructor of the value provided is located on the left or on the right:
--
-- @
-- instance (Encode' f, Encode' g) => Encode' (f ':+:' g) where
-- encode' ('L1' x) = False : encode' x
-- encode' ('R1' x) = True : encode' x
-- @
--
-- (Note that this encoding strategy may not be reliable across different
-- versions of GHC. Recall that the compiler is free to choose any nesting
-- of ':+:' it chooses, so if GHC chooses @(a ':+:' b) ':+:' c@, then the
-- encoding for @a@ would be @[False, False]@, @b@ would be @[False, True]@,
-- and @c@ would be @[True]@. However, if GHC chooses @a ':+:' (b ':+:' c)@,
-- then the encoding for @a@ would be @[False]@, @b@ would be @[True, False]@,
-- and @c@ would be @[True, True]@.)
--
-- In the case for ':*:', we append the encodings of the two subcomponents:
--
-- @
-- instance (Encode' f, Encode' g) => Encode' (f ':*:' g) where
-- encode' (x ':*:' y) = encode' x ++ encode' y
-- @
--
-- The case for 'K1' is rather interesting. Here, we call the final function
-- @encode@ that we yet have to define, recursively. We will use another type
-- class @Encode@ for that function:
--
-- @
-- instance (Encode c) => Encode' ('K1' i c) where
-- encode' ('K1' x) = encode x
-- @
--
-- Note how we can define a uniform instance for 'M1', because we completely
-- disregard all meta-information:
--
-- @
-- instance (Encode' f) => Encode' ('M1' i t f) where
-- encode' ('M1' x) = encode' x
-- @
--
-- Unlike in 'K1', the instance for 'M1' refers to @encode'@, not @encode@.
-- *** The wrapper and generic default
--
-- |
--
-- We now define class @Encode@ for the actual @encode@ function:
--
-- @
-- class Encode a where
-- encode :: a -> [Bool]
-- default encode :: (Generic a, Encode' (Rep a)) => a -> [Bool]
-- encode x = encode' ('from' x)
-- @
--
-- The incoming @x@ is converted using 'from', then we dispatch to the
-- generic instances using @encode'@. We use this as a default definition
-- for @encode@. We need the @default encode@ signature because ordinary
-- Haskell default methods must not introduce additional class constraints,
-- but our generic default does.
--
-- Defining a particular instance is now as simple as saying
--
-- @
-- instance (Encode a) => Encode (Tree a)
-- @
--
#if 0
-- /TODO:/ Add usage example?
--
#endif
-- The generic default is being used. In the future, it will hopefully be
-- possible to use @deriving Encode@ as well, but GHC does not yet support
-- that syntax for this situation.
--
-- Having @Encode@ as a class has the advantage that we can define
-- non-generic special cases, which is particularly useful for abstract
-- datatypes that have no structural representation. For example, given
-- a suitable integer encoding function @encodeInt@, we can define
--
-- @
-- instance Encode Int where
-- encode = encodeInt
-- @
-- *** Omitting generic instances
--
-- |
--
-- It is not always required to provide instances for all the generic
-- representation types, but omitting instances restricts the set of
-- datatypes the functions will work for:
--
-- * If no ':+:' instance is given, the function may still work for
-- empty datatypes or datatypes that have a single constructor,
-- but will fail on datatypes with more than one constructor.
--
-- * If no ':*:' instance is given, the function may still work for
-- datatypes where each constructor has just zero or one field,
-- in particular for enumeration types.
--
-- * If no 'K1' instance is given, the function may still work for
-- enumeration types, where no constructor has any fields.
--
-- * If no 'V1' instance is given, the function may still work for
-- any datatype that is not empty.
--
-- * If no 'U1' instance is given, the function may still work for
-- any datatype where each constructor has at least one field.
--
-- An 'M1' instance is always required (but it can just ignore the
-- meta-information, as is the case for @encode@ above).
#if 0
-- *** Using meta-information
--
-- |
--
-- TODO
#endif
-- ** Generic constructor classes
--
-- |
--
-- Datatype-generic functions as defined above work for a large class
-- of datatypes, including parameterized datatypes. (We have used @Tree@
-- as our example above, which is of kind @* -> *@.) However, the
-- 'Generic' class ranges over types of kind @*@, and therefore, the
-- resulting generic functions (such as @encode@) must be parameterized
-- by a generic type argument of kind @*@.
--
-- What if we want to define generic classes that range over type
-- constructors (such as 'Data.Functor.Functor',
-- 'Data.Traversable.Traversable', or 'Data.Foldable.Foldable')?
-- *** The 'Generic1' class
--
-- |
--
-- Like 'Generic', there is a class 'Generic1' that defines a
-- representation 'Rep1' and conversion functions 'from1' and 'to1',
-- only that 'Generic1' ranges over types of kind @* -> *@. (More generally,
-- it can range over types of kind @k -> *@, for any kind @k@, if the
-- @PolyKinds@ extension is enabled. More on this later.)
-- The 'Generic1' class is also derivable.
--
-- The representation 'Rep1' is ever so slightly different from 'Rep'.
-- Let us look at @Tree@ as an example again:
--
-- @
-- data Tree a = Leaf a | Node (Tree a) (Tree a)
-- deriving 'Generic1'
-- @
--
-- The above declaration causes the following representation to be generated:
--
-- @
-- instance 'Generic1' Tree where
-- type 'Rep1' Tree =
-- 'D1' ('MetaData \"Tree\" \"Main\" \"package-name\" 'False)
-- ('C1' ('MetaCons \"Leaf\" 'PrefixI 'False)
-- ('S1' ('MetaSel 'Nothing
-- 'NoSourceUnpackedness
-- 'NoSourceStrictness
-- 'DecidedLazy)
-- 'Par1')
-- ':+:'
-- 'C1' ('MetaCons \"Node\" 'PrefixI 'False)
-- ('S1' ('MetaSel 'Nothing
-- 'NoSourceUnpackedness
-- 'NoSourceStrictness
-- 'DecidedLazy)
-- ('Rec1' Tree)
-- ':*:'
-- 'S1' ('MetaSel 'Nothing
-- 'NoSourceUnpackedness
-- 'NoSourceStrictness
-- 'DecidedLazy)
-- ('Rec1' Tree)))
-- ...
-- @
--
-- The representation reuses 'D1', 'C1', 'S1' (and thereby 'M1') as well
-- as ':+:' and ':*:' from 'Rep'. (This reusability is the reason that we
-- carry around the dummy type argument for kind-@*@-types, but there are
-- already enough different names involved without duplicating each of
-- these.)
--
-- What's different is that we now use 'Par1' to refer to the parameter
-- (and that parameter, which used to be @a@), is not mentioned explicitly
-- by name anywhere; and we use 'Rec1' to refer to a recursive use of @Tree a@.
-- *** Representation of @* -> *@ types
--
-- |
--
-- Unlike 'Rec0', the 'Par1' and 'Rec1' type constructors do not
-- map to 'K1'. They are defined directly, as follows:
--
-- @
-- newtype 'Par1' p = 'Par1' { 'unPar1' :: p } -- gives access to parameter p
-- newtype 'Rec1' f p = 'Rec1' { 'unRec1' :: f p } -- a wrapper
-- @
--
-- In 'Par1', the parameter @p@ is used for the first time, whereas 'Rec1' simply
-- wraps an application of @f@ to @p@.
--
-- Note that 'K1' (in the guise of 'Rec0') can still occur in a 'Rep1' representation,
-- namely when the datatype has a field that does not mention the parameter.
--
-- The declaration
--
-- @
-- data WithInt a = WithInt Int a
-- deriving 'Generic1'
-- @
--
-- yields
--
-- @
-- instance 'Generic1' WithInt where
-- type 'Rep1' WithInt =
-- 'D1' ('MetaData \"WithInt\" \"Main\" \"package-name\" 'False)
-- ('C1' ('MetaCons \"WithInt\" 'PrefixI 'False)
-- ('S1' ('MetaSel 'Nothing
-- 'NoSourceUnpackedness
-- 'NoSourceStrictness
-- 'DecidedLazy)
-- ('Rec0' Int)
-- ':*:'
-- 'S1' ('MetaSel 'Nothing
-- 'NoSourceUnpackedness
-- 'NoSourceStrictness
-- 'DecidedLazy)
-- 'Par1'))
-- @
--
-- If the parameter @a@ appears underneath a composition of other type constructors,
-- then the representation involves composition, too:
--
-- @
-- data Rose a = Fork a [Rose a]
-- @
--
-- yields
--
-- @
-- instance 'Generic1' Rose where
-- type 'Rep1' Rose =
-- 'D1' ('MetaData \"Rose\" \"Main\" \"package-name\" 'False)
-- ('C1' ('MetaCons \"Fork\" 'PrefixI 'False)
-- ('S1' ('MetaSel 'Nothing
-- 'NoSourceUnpackedness
-- 'NoSourceStrictness
-- 'DecidedLazy)
-- 'Par1'
-- ':*:'
-- 'S1' ('MetaSel 'Nothing
-- 'NoSourceUnpackedness
-- 'NoSourceStrictness
-- 'DecidedLazy)
-- ([] ':.:' 'Rec1' Rose)))
-- @
--
-- where
--
-- @
-- newtype (':.:') f g p = 'Comp1' { 'unComp1' :: f (g p) }
-- @
-- *** Representation of @k -> *@ types
--
-- |
--
-- The 'Generic1' class can be generalized to range over types of kind
-- @k -> *@, for any kind @k@. To do so, derive a 'Generic1' instance with the
-- @PolyKinds@ extension enabled. For example, the declaration
--
-- @
-- data Proxy (a :: k) = Proxy deriving 'Generic1'
-- @
--
-- yields a slightly different instance depending on whether @PolyKinds@ is
-- enabled. If compiled without @PolyKinds@, then @'Rep1' Proxy :: * -> *@, but
-- if compiled with @PolyKinds@, then @'Rep1' Proxy :: k -> *@.
-- *** Representation of unlifted types
--
-- |
--
-- If one were to attempt to derive a Generic instance for a datatype with an
-- unlifted argument (for example, 'Int#'), one might expect the occurrence of
-- the 'Int#' argument to be marked with @'Rec0' 'Int#'@. This won't work,
-- though, since 'Int#' is of an unlifted kind, and 'Rec0' expects a type of
-- kind @*@.
--
-- One solution would be to represent an occurrence of 'Int#' with 'Rec0 Int'
-- instead. With this approach, however, the programmer has no way of knowing
-- whether the 'Int' is actually an 'Int#' in disguise.
--
-- Instead of reusing 'Rec0', a separate data family 'URec' is used to mark
-- occurrences of common unlifted types:
--
-- @
-- data family URec a p
--
-- data instance 'URec' ('Ptr' ()) p = 'UAddr' { 'uAddr#' :: 'Addr#' }
-- data instance 'URec' 'Char' p = 'UChar' { 'uChar#' :: 'Char#' }
-- data instance 'URec' 'Double' p = 'UDouble' { 'uDouble#' :: 'Double#' }
-- data instance 'URec' 'Int' p = 'UFloat' { 'uFloat#' :: 'Float#' }
-- data instance 'URec' 'Float' p = 'UInt' { 'uInt#' :: 'Int#' }
-- data instance 'URec' 'Word' p = 'UWord' { 'uWord#' :: 'Word#' }
-- @
--
-- Several type synonyms are provided for convenience:
--
-- @
-- type 'UAddr' = 'URec' ('Ptr' ())
-- type 'UChar' = 'URec' 'Char'
-- type 'UDouble' = 'URec' 'Double'
-- type 'UFloat' = 'URec' 'Float'
-- type 'UInt' = 'URec' 'Int'
-- type 'UWord' = 'URec' 'Word'
-- @
--
-- The declaration
--
-- @
-- data IntHash = IntHash Int#
-- deriving 'Generic'
-- @
--
-- yields
--
-- @
-- instance 'Generic' IntHash where
-- type 'Rep' IntHash =
-- 'D1' ('MetaData \"IntHash\" \"Main\" \"package-name\" 'False)
-- ('C1' ('MetaCons \"IntHash\" 'PrefixI 'False)
-- ('S1' ('MetaSel 'Nothing
-- 'NoSourceUnpackedness
-- 'NoSourceStrictness
-- 'DecidedLazy)
-- 'UInt'))
-- @
--
-- Currently, only the six unlifted types listed above are generated, but this
-- may be extended to encompass more unlifted types in the future.
#if 0
-- *** Limitations
--
-- |
--
-- /TODO/
--
-- /TODO:/ Also clear up confusion about 'Rec0' and 'Rec1' not really indicating recursion.
--
#endif
-----------------------------------------------------------------------------
-- * Generic representation types
V1, U1(..), Par1(..), Rec1(..), K1(..), M1(..)
, (:+:)(..), (:*:)(..), (:.:)(..)
-- ** Unboxed representation types
, URec(..)
, type UAddr, type UChar, type UDouble
, type UFloat, type UInt, type UWord
-- ** Synonyms for convenience
, Rec0, R
, D1, C1, S1, D, C, S
-- * Meta-information
, Datatype(..), Constructor(..), Selector(..)
, Fixity(..), FixityI(..), Associativity(..), prec
, SourceUnpackedness(..), SourceStrictness(..), DecidedStrictness(..)
, Meta(..)
-- * Generic type classes
, Generic(..), Generic1(..)
) where
-- We use some base types
import Data.Either ( Either (..) )
import Data.Maybe ( Maybe(..), fromMaybe )
import Data.Ord ( Down(..) )
import GHC.Integer ( Integer, integerToInt )
import GHC.Prim ( Addr#, Char#, Double#, Float#, Int#, Word# )
import GHC.Ptr ( Ptr )
import GHC.Types
-- Needed for instances
import GHC.Ix ( Ix )
import GHC.Base ( Alternative(..), Applicative(..), Functor(..)
, Monad(..), MonadPlus(..), NonEmpty(..), String, coerce
, Semigroup(..), Monoid(..) )
import GHC.Classes ( Eq(..), Ord(..) )
import GHC.Enum ( Bounded, Enum )
import GHC.Read ( Read(..) )
import GHC.Show ( Show(..), showString )
import GHC.Stack.Types ( SrcLoc(..) )
import GHC.Unicode ( GeneralCategory(..) )
import GHC.Fingerprint.Type ( Fingerprint(..) )
-- Needed for metadata
import Data.Proxy ( Proxy(..) )
import GHC.TypeLits ( KnownSymbol, KnownNat, symbolVal, natVal )
--------------------------------------------------------------------------------
-- Representation types
--------------------------------------------------------------------------------
-- | Void: used for datatypes without constructors
data V1 (p :: k)
deriving ( Eq -- ^ @since 4.9.0.0
, Ord -- ^ @since 4.9.0.0
, Read -- ^ @since 4.9.0.0
, Show -- ^ @since 4.9.0.0
, Functor -- ^ @since 4.9.0.0
, Generic -- ^ @since 4.9.0.0
, Generic1 -- ^ @since 4.9.0.0
)
-- | @since 4.12.0.0
instance Semigroup (V1 p) where
V1 p
v <> :: V1 p -> V1 p -> V1 p
<> V1 p
_ = V1 p
v
-- | Unit: used for constructors without arguments
data U1 (p :: k) = U1
deriving ( Generic -- ^ @since 4.7.0.0
, Generic1 -- ^ @since 4.9.0.0
)
-- | @since 4.9.0.0
instance Eq (U1 p) where
U1 p
_ == :: U1 p -> U1 p -> Bool
== U1 p
_ = Bool
True
-- | @since 4.7.0.0
instance Ord (U1 p) where
compare :: U1 p -> U1 p -> Ordering
compare U1 p
_ U1 p
_ = Ordering
EQ
-- | @since 4.9.0.0
deriving instance Read (U1 p)
-- | @since 4.9.0.0
instance Show (U1 p) where
showsPrec :: Int -> U1 p -> ShowS
showsPrec Int
_ U1 p
_ = String -> ShowS
showString String
"U1"
-- | @since 4.9.0.0
instance Functor U1 where
fmap :: (a -> b) -> U1 a -> U1 b
fmap a -> b
_ U1 a
_ = U1 b
forall k (p :: k). U1 p
U1
-- | @since 4.9.0.0
instance Applicative U1 where
pure :: a -> U1 a
pure a
_ = U1 a
forall k (p :: k). U1 p
U1
U1 (a -> b)
_ <*> :: U1 (a -> b) -> U1 a -> U1 b
<*> U1 a
_ = U1 b
forall k (p :: k). U1 p
U1
liftA2 :: (a -> b -> c) -> U1 a -> U1 b -> U1 c
liftA2 a -> b -> c
_ U1 a
_ U1 b
_ = U1 c
forall k (p :: k). U1 p
U1
-- | @since 4.9.0.0
instance Alternative U1 where
empty :: U1 a
empty = U1 a
forall k (p :: k). U1 p
U1
U1 a
_ <|> :: U1 a -> U1 a -> U1 a
<|> U1 a
_ = U1 a
forall k (p :: k). U1 p
U1
-- | @since 4.9.0.0
instance Monad U1 where
U1 a
_ >>= :: U1 a -> (a -> U1 b) -> U1 b
>>= a -> U1 b
_ = U1 b
forall k (p :: k). U1 p
U1
-- | @since 4.9.0.0
instance MonadPlus U1
-- | @since 4.12.0.0
instance Semigroup (U1 p) where
U1 p
_ <> :: U1 p -> U1 p -> U1 p
<> U1 p
_ = U1 p
forall k (p :: k). U1 p
U1
-- | @since 4.12.0.0
instance Monoid (U1 p) where
mempty :: U1 p
mempty = U1 p
forall k (p :: k). U1 p
U1
-- | Used for marking occurrences of the parameter
newtype Par1 p = Par1 { Par1 p -> p
unPar1 :: p }
deriving ( Eq -- ^ @since 4.7.0.0
, Ord -- ^ @since 4.7.0.0
, Read -- ^ @since 4.7.0.0
, Show -- ^ @since 4.7.0.0
, Functor -- ^ @since 4.9.0.0
, Generic -- ^ @since 4.7.0.0
, Generic1 -- ^ @since 4.9.0.0
)
-- | @since 4.9.0.0
instance Applicative Par1 where
pure :: a -> Par1 a
pure = a -> Par1 a
forall a. a -> Par1 a
Par1
<*> :: Par1 (a -> b) -> Par1 a -> Par1 b
(<*>) = Par1 (a -> b) -> Par1 a -> Par1 b
coerce
liftA2 :: (a -> b -> c) -> Par1 a -> Par1 b -> Par1 c
liftA2 = (a -> b -> c) -> Par1 a -> Par1 b -> Par1 c
coerce
-- | @since 4.9.0.0
instance Monad Par1 where
Par1 a
x >>= :: Par1 a -> (a -> Par1 b) -> Par1 b
>>= a -> Par1 b
f = a -> Par1 b
f a
x
-- | @since 4.12.0.0
deriving instance Semigroup p => Semigroup (Par1 p)
-- | @since 4.12.0.0
deriving instance Monoid p => Monoid (Par1 p)
-- | Recursive calls of kind @* -> *@ (or kind @k -> *@, when @PolyKinds@
-- is enabled)
newtype Rec1 (f :: k -> Type) (p :: k) = Rec1 { Rec1 f p -> f p
unRec1 :: f p }
deriving ( Eq -- ^ @since 4.7.0.0
, Ord -- ^ @since 4.7.0.0
, Read -- ^ @since 4.7.0.0
, Show -- ^ @since 4.7.0.0
, Functor -- ^ @since 4.9.0.0
, Generic -- ^ @since 4.7.0.0
, Generic1 -- ^ @since 4.9.0.0
)
-- | @since 4.9.0.0
deriving instance Applicative f => Applicative (Rec1 f)
-- | @since 4.9.0.0
deriving instance Alternative f => Alternative (Rec1 f)
-- | @since 4.9.0.0
instance Monad f => Monad (Rec1 f) where
Rec1 f a
x >>= :: Rec1 f a -> (a -> Rec1 f b) -> Rec1 f b
>>= a -> Rec1 f b
f = f b -> Rec1 f b
forall k (f :: k -> *) (p :: k). f p -> Rec1 f p
Rec1 (f a
x f a -> (a -> f b) -> f b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
Evidence bound by a type signature of the constraint type Monad f
>>= \a
a -> Rec1 f b -> f b
forall k (f :: k -> *) (p :: k). Rec1 f p -> f p
unRec1 (a -> Rec1 f b
f a
a))
-- | @since 4.9.0.0
deriving instance MonadPlus f => MonadPlus (Rec1 f)
-- | @since 4.12.0.0
deriving instance Semigroup (f p) => Semigroup (Rec1 f p)
-- | @since 4.12.0.0
deriving instance Monoid (f p) => Monoid (Rec1 f p)
-- | Constants, additional parameters and recursion of kind @*@
newtype K1 (i :: Type) c (p :: k) = K1 { K1 i c p -> c
unK1 :: c }
deriving ( Eq -- ^ @since 4.7.0.0
, Ord -- ^ @since 4.7.0.0
, Read -- ^ @since 4.7.0.0
, Show -- ^ @since 4.7.0.0
, Functor -- ^ @since 4.9.0.0
, Generic -- ^ @since 4.7.0.0
, Generic1 -- ^ @since 4.9.0.0
)
-- | @since 4.12.0.0
instance Monoid c => Applicative (K1 i c) where
pure :: a -> K1 i c a
pure a
_ = c -> K1 i c a
forall k i c (p :: k). c -> K1 i c p
K1 c
forall a. Monoid a => a
Evidence bound by a type signature of the constraint type Monoid c
mempty
liftA2 :: (a -> b -> c) -> K1 i c a -> K1 i c b -> K1 i c c
liftA2 = \a -> b -> c
_ -> (c -> c -> c) -> K1 i c a -> K1 i c b -> K1 i c c
coerce (c -> c -> c
forall a. Monoid a => a -> a -> a
Evidence bound by a type signature of the constraint type Monoid c
mappend :: c -> c -> c)
<*> :: K1 i c (a -> b) -> K1 i c a -> K1 i c b
(<*>) = (c -> c -> c) -> K1 i c (a -> b) -> K1 i c a -> K1 i c b
coerce (c -> c -> c
forall a. Monoid a => a -> a -> a
Evidence bound by a type signature of the constraint type Monoid c
mappend :: c -> c -> c)
-- | @since 4.12.0.0
deriving instance Semigroup c => Semigroup (K1 i c p)
-- | @since 4.12.0.0
deriving instance Monoid c => Monoid (K1 i c p)
-- | @since 4.9.0.0
deriving instance Applicative f => Applicative (M1 i c f)
-- | @since 4.9.0.0
deriving instance Alternative f => Alternative (M1 i c f)
-- | @since 4.9.0.0
deriving instance Monad f => Monad (M1 i c f)
-- | @since 4.9.0.0
deriving instance MonadPlus f => MonadPlus (M1 i c f)
-- | @since 4.12.0.0
deriving instance Semigroup (f p) => Semigroup (M1 i c f p)
-- | @since 4.12.0.0
deriving instance Monoid (f p) => Monoid (M1 i c f p)
-- | Meta-information (constructor names, etc.)
newtype M1 (i :: Type) (c :: Meta) (f :: k -> Type) (p :: k) =
M1 { M1 i c f p -> f p
unM1 :: f p }
deriving ( Eq -- ^ @since 4.7.0.0
, Ord -- ^ @since 4.7.0.0
, Read -- ^ @since 4.7.0.0
, Show -- ^ @since 4.7.0.0
, Functor -- ^ @since 4.9.0.0
, Generic -- ^ @since 4.7.0.0
, Generic1 -- ^ @since 4.9.0.0
)
-- | Sums: encode choice between constructors
infixr 5 :+:
data (:+:) (f :: k -> Type) (g :: k -> Type) (p :: k) = L1 (f p) | R1 (g p)
deriving ( Eq -- ^ @since 4.7.0.0
, Ord -- ^ @since 4.7.0.0
, Read -- ^ @since 4.7.0.0
, Show -- ^ @since 4.7.0.0
, Functor -- ^ @since 4.9.0.0
, Generic -- ^ @since 4.7.0.0
, Generic1 -- ^ @since 4.9.0.0
)
-- | Products: encode multiple arguments to constructors
infixr 6 :*:
data (:*:) (f :: k -> Type) (g :: k -> Type) (p :: k) = f p :*: g p
deriving ( Eq -- ^ @since 4.7.0.0
, Ord -- ^ @since 4.7.0.0
, Read -- ^ @since 4.7.0.0
, Show -- ^ @since 4.7.0.0
, Functor -- ^ @since 4.9.0.0
, Generic -- ^ @since 4.7.0.0
, Generic1 -- ^ @since 4.9.0.0
)
-- | @since 4.9.0.0
instance (Applicative f, Applicative g) => Applicative (f :*: g) where
pure :: a -> (:*:) f g a
pure a
a = a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
Evidence bound by a type signature of the constraint type Applicative f
pure a
a f a -> g a -> (:*:) f g a
forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
:*: a -> g a
forall (f :: * -> *) a. Applicative f => a -> f a
Evidence bound by a type signature of the constraint type Applicative g
pure a
a
(f (a -> b)
f :*: g (a -> b)
g) <*> :: (:*:) f g (a -> b) -> (:*:) f g a -> (:*:) f g b
<*> (f a
x :*: g a
y) = (f (a -> b)
f f (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
Evidence bound by a type signature of the constraint type Applicative f
<*> f a
x) f b -> g b -> (:*:) f g b
forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
:*: (g (a -> b)
g g (a -> b) -> g a -> g b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
Evidence bound by a type signature of the constraint type Applicative g
<*> g a
y)
liftA2 :: (a -> b -> c) -> (:*:) f g a -> (:*:) f g b -> (:*:) f g c
liftA2 a -> b -> c
f (f a
a :*: g a
b) (f b
x :*: g b
y) = (a -> b -> c) -> f a -> f b -> f c
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
Evidence bound by a type signature of the constraint type Applicative f
liftA2 a -> b -> c
f f a
a f b
x f c -> g c -> (:*:) f g c
forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
:*: (a -> b -> c) -> g a -> g b -> g c
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
Evidence bound by a type signature of the constraint type Applicative g
liftA2 a -> b -> c
f g a
b g b
y
-- | @since 4.9.0.0
instance (Alternative f, Alternative g) => Alternative (f :*: g) where
empty :: (:*:) f g a
empty = f a
forall (f :: * -> *) a. Alternative f => f a
Evidence bound by a type signature of the constraint type Alternative f
empty f a -> g a -> (:*:) f g a
forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
:*: g a
forall (f :: * -> *) a. Alternative f => f a
Evidence bound by a type signature of the constraint type Alternative g
empty
(f a
x1 :*: g a
y1) <|> :: (:*:) f g a -> (:*:) f g a -> (:*:) f g a
<|> (f a
x2 :*: g a
y2) = (f a
x1 f a -> f a -> f a
forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
Evidence bound by a type signature of the constraint type Alternative f
<|> f a
x2) f a -> g a -> (:*:) f g a
forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
:*: (g a
y1 g a -> g a -> g a
forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
Evidence bound by a type signature of the constraint type Alternative g
<|> g a
y2)
-- | @since 4.9.0.0
instance (Monad f, Monad g) => Monad (f :*: g) where
(f a
m :*: g a
n) >>= :: (:*:) f g a -> (a -> (:*:) f g b) -> (:*:) f g b
>>= a -> (:*:) f g b
f = (f a
m f a -> (a -> f b) -> f b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
Evidence bound by a type signature of the constraint type Monad f
>>= \a
a -> (:*:) f g b -> f b
forall {k} {f :: k -> *} {g :: k -> *} {p :: k}. (:*:) f g p -> f p
fstP (a -> (:*:) f g b
f a
a)) f b -> g b -> (:*:) f g b
forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
:*: (g a
n g a -> (a -> g b) -> g b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
Evidence bound by a type signature of the constraint type Monad g
>>= \a
a -> (:*:) f g b -> g b
forall {k} {f :: k -> *} {g :: k -> *} {p :: k}. (:*:) f g p -> g p
sndP (a -> (:*:) f g b
f a
a))
where
fstP :: (:*:) f g p -> f p
fstP (f p
a :*: g p
_) = f p
a
sndP :: (:*:) f g p -> g p
sndP (f p
_ :*: g p
b) = g p
b
-- | @since 4.9.0.0
instance (MonadPlus f, MonadPlus g) => MonadPlus (f :*: g)
-- | @since 4.12.0.0
instance (Semigroup (f p), Semigroup (g p)) => Semigroup ((f :*: g) p) where
(f p
x1 :*: g p
y1) <> :: (:*:) f g p -> (:*:) f g p -> (:*:) f g p
<> (f p
x2 :*: g p
y2) = (f p
x1 f p -> f p -> f p
forall a. Semigroup a => a -> a -> a
Evidence bound by a type signature of the constraint type Semigroup (f p)
<> f p
x2) f p -> g p -> (:*:) f g p
forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
:*: (g p
y1 g p -> g p -> g p
forall a. Semigroup a => a -> a -> a
Evidence bound by a type signature of the constraint type Semigroup (g p)
<> g p
y2)
-- | @since 4.12.0.0
instance (Monoid (f p), Monoid (g p)) => Monoid ((f :*: g) p) where
mempty :: (:*:) f g p
mempty = f p
forall a. Monoid a => a
Evidence bound by a type signature of the constraint type Monoid (f p)
mempty f p -> g p -> (:*:) f g p
forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
:*: g p
forall a. Monoid a => a
Evidence bound by a type signature of the constraint type Monoid (g p)
mempty
-- | Composition of functors
infixr 7 :.:
newtype (:.:) (f :: k2 -> Type) (g :: k1 -> k2) (p :: k1) =
Comp1 { (:.:) f g p -> f (g p)
unComp1 :: f (g p) }
deriving ( Eq -- ^ @since 4.7.0.0
, Ord -- ^ @since 4.7.0.0
, Read -- ^ @since 4.7.0.0
, Show -- ^ @since 4.7.0.0
, Functor -- ^ @since 4.9.0.0
, Generic -- ^ @since 4.7.0.0
, Generic1 -- ^ @since 4.9.0.0
)
-- | @since 4.9.0.0
instance (Applicative f, Applicative g) => Applicative (f :.: g) where
pure :: a -> (:.:) f g a
pure a
x = f (g a) -> (:.:) f g a
forall k2 k1 (f :: k2 -> *) (g :: k1 -> k2) (p :: k1).
f (g p) -> (:.:) f g p
Comp1 (g a -> f (g a)
forall (f :: * -> *) a. Applicative f => a -> f a
Evidence bound by a type signature of the constraint type Applicative f
pure (a -> g a
forall (f :: * -> *) a. Applicative f => a -> f a
Evidence bound by a type signature of the constraint type Applicative g
pure a
x))
Comp1 f (g (a -> b))
f <*> :: (:.:) f g (a -> b) -> (:.:) f g a -> (:.:) f g b
<*> Comp1 f (g a)
x = f (g b) -> (:.:) f g b
forall k2 k1 (f :: k2 -> *) (g :: k1 -> k2) (p :: k1).
f (g p) -> (:.:) f g p
Comp1 ((g (a -> b) -> g a -> g b) -> f (g (a -> b)) -> f (g a) -> f (g b)
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
Evidence bound by a type signature of the constraint type Applicative f
liftA2 g (a -> b) -> g a -> g b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
Evidence bound by a type signature of the constraint type Applicative g
(<*>) f (g (a -> b))
f f (g a)
x)
liftA2 :: (a -> b -> c) -> (:.:) f g a -> (:.:) f g b -> (:.:) f g c
liftA2 a -> b -> c
f (Comp1 f (g a)
x) (Comp1 f (g b)
y) = f (g c) -> (:.:) f g c
forall k2 k1 (f :: k2 -> *) (g :: k1 -> k2) (p :: k1).
f (g p) -> (:.:) f g p
Comp1 ((g a -> g b -> g c) -> f (g a) -> f (g b) -> f (g c)
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
Evidence bound by a type signature of the constraint type Applicative f
liftA2 ((a -> b -> c) -> g a -> g b -> g c
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
Evidence bound by a type signature of the constraint type Applicative g
liftA2 a -> b -> c
f) f (g a)
x f (g b)
y)
-- | @since 4.9.0.0
instance (Alternative f, Applicative g) => Alternative (f :.: g) where
empty :: (:.:) f g a
empty = f (g a) -> (:.:) f g a
forall k2 k1 (f :: k2 -> *) (g :: k1 -> k2) (p :: k1).
f (g p) -> (:.:) f g p
Comp1 f (g a)
forall (f :: * -> *) a. Alternative f => f a
Evidence bound by a type signature of the constraint type Alternative f
empty
<|> :: (:.:) f g a -> (:.:) f g a -> (:.:) f g a
(<|>) = (f (g a) -> f (g a) -> f (g a))
-> (:.:) f g a -> (:.:) f g a -> (:.:) f g a
coerce (f (g a) -> f (g a) -> f (g a)
forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
Evidence bound by a type signature of the constraint type Alternative f
(<|>) :: f (g a) -> f (g a) -> f (g a)) ::
forall a . (f :.: g) a -> (f :.: g) a -> (f :.: g) a
-- | @since 4.12.0.0
deriving instance Semigroup (f (g p)) => Semigroup ((f :.: g) p)
-- | @since 4.12.0.0
deriving instance Monoid (f (g p)) => Monoid ((f :.: g) p)
-- | Constants of unlifted kinds
--
-- @since 4.9.0.0
data family URec (a :: Type) (p :: k)
-- | Used for marking occurrences of 'Addr#'
--
-- @since 4.9.0.0
data instance URec (Ptr ()) (p :: k) = UAddr { URec (Ptr ()) p -> Addr#
uAddr# :: Addr# }
deriving ( Eq -- ^ @since 4.9.0.0
, Ord -- ^ @since 4.9.0.0
, Functor -- ^ @since 4.9.0.0
, Generic -- ^ @since 4.9.0.0
, Generic1 -- ^ @since 4.9.0.0
)
-- | Used for marking occurrences of 'Char#'
--
-- @since 4.9.0.0
data instance URec Char (p :: k) = UChar { URec Char p -> Char#
uChar# :: Char# }
deriving ( Eq -- ^ @since 4.9.0.0
, Ord -- ^ @since 4.9.0.0
, Show -- ^ @since 4.9.0.0
, Functor -- ^ @since 4.9.0.0
, Generic -- ^ @since 4.9.0.0
, Generic1 -- ^ @since 4.9.0.0
)
-- | Used for marking occurrences of 'Double#'
--
-- @since 4.9.0.0
data instance URec Double (p :: k) = UDouble { URec Double p -> Double#
uDouble# :: Double# }
deriving ( Eq -- ^ @since 4.9.0.0
, Ord -- ^ @since 4.9.0.0
, Show -- ^ @since 4.9.0.0
, Functor -- ^ @since 4.9.0.0
, Generic -- ^ @since 4.9.0.0
, Generic1 -- ^ @since 4.9.0.0
)
-- | Used for marking occurrences of 'Float#'
--
-- @since 4.9.0.0
data instance URec Float (p :: k) = UFloat { URec Float p -> Float#
uFloat# :: Float# }
deriving ( URec Float p -> URec Float p -> Bool
(URec Float p -> URec Float p -> Bool)
-> (URec Float p -> URec Float p -> Bool) -> Eq (URec Float p)
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
forall k (p :: k). URec Float p -> URec Float p -> Bool
/= :: URec Float p -> URec Float p -> Bool
$c/= :: forall k (p :: k). URec Float p -> URec Float p -> Bool
== :: URec Float p -> URec Float p -> Bool
$c== :: forall k (p :: k). URec Float p -> URec Float p -> Bool
Eq, Eq (URec Float p)
Eq (URec Float p)
-> (URec Float p -> URec Float p -> Ordering)
-> (URec Float p -> URec Float p -> Bool)
-> (URec Float p -> URec Float p -> Bool)
-> (URec Float p -> URec Float p -> Bool)
-> (URec Float p -> URec Float p -> Bool)
-> (URec Float p -> URec Float p -> URec Float p)
-> (URec Float p -> URec Float p -> URec Float p)
-> Ord (URec Float p)
URec Float p -> URec Float p -> Bool
URec Float p -> URec Float p -> Ordering
URec Float p -> URec Float p -> URec Float p
forall a.
Eq a
-> (a -> a -> Ordering)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> a)
-> (a -> a -> a)
-> Ord a
forall k (p :: k). Eq (URec Float p)
forall k (p :: k). URec Float p -> URec Float p -> Bool
forall k (p :: k). URec Float p -> URec Float p -> Ordering
forall k (p :: k). URec Float p -> URec Float p -> URec Float p
min :: URec Float p -> URec Float p -> URec Float p
$cmin :: forall k (p :: k). URec Float p -> URec Float p -> URec Float p
max :: URec Float p -> URec Float p -> URec Float p
$cmax :: forall k (p :: k). URec Float p -> URec Float p -> URec Float p
>= :: URec Float p -> URec Float p -> Bool
$c>= :: forall k (p :: k). URec Float p -> URec Float p -> Bool
> :: URec Float p -> URec Float p -> Bool
$c> :: forall k (p :: k). URec Float p -> URec Float p -> Bool
<= :: URec Float p -> URec Float p -> Bool
$c<= :: forall k (p :: k). URec Float p -> URec Float p -> Bool
< :: URec Float p -> URec Float p -> Bool
$c< :: forall k (p :: k). URec Float p -> URec Float p -> Bool
compare :: URec Float p -> URec Float p -> Ordering
$ccompare :: forall k (p :: k). URec Float p -> URec Float p -> Ordering
Instance of class: Eq of the constraint type forall k (p :: k). Eq (URec Float p)
Instance of class: Ord of the constraint type forall k (p :: k). Ord (URec Float p)
Instance of class: Eq of the constraint type forall k (p :: k). Eq (URec Float p)
Ord, Int -> URec Float p -> ShowS
[URec Float p] -> ShowS
URec Float p -> String
(Int -> URec Float p -> ShowS)
-> (URec Float p -> String)
-> ([URec Float p] -> ShowS)
-> Show (URec Float p)
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
forall k (p :: k). Int -> URec Float p -> ShowS
forall k (p :: k). [URec Float p] -> ShowS
forall k (p :: k). URec Float p -> String
showList :: [URec Float p] -> ShowS
$cshowList :: forall k (p :: k). [URec Float p] -> ShowS
show :: URec Float p -> String
$cshow :: forall k (p :: k). URec Float p -> String
showsPrec :: Int -> URec Float p -> ShowS
$cshowsPrec :: forall k (p :: k). Int -> URec Float p -> ShowS
External instance of the constraint type Show Float
External instance of the constraint type Ord Int
Show
, Functor -- ^ @since 4.9.0.0
, (forall x. URec Float p -> Rep (URec Float p) x)
-> (forall x. Rep (URec Float p) x -> URec Float p)
-> Generic (URec Float p)
forall x. Rep (URec Float p) x -> URec Float p
forall x. URec Float p -> Rep (URec Float p) x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
forall k (p :: k) x. Rep (URec Float p) x -> URec Float p
forall k (p :: k) x. URec Float p -> Rep (URec Float p) x
$cto :: forall k (p :: k) x. Rep (URec Float p) x -> URec Float p
$cfrom :: forall k (p :: k) x. URec Float p -> Rep (URec Float p) x
Generic
, Generic1 -- ^ @since 4.9.0.0
)
-- | Used for marking occurrences of 'Int#'
--
-- @since 4.9.0.0
data instance URec Int (p :: k) = UInt { URec Int p -> Int#
uInt# :: Int# }
deriving ( Eq -- ^ @since 4.9.0.0
, Ord -- ^ @since 4.9.0.0
, Show -- ^ @since 4.9.0.0
, Functor -- ^ @since 4.9.0.0
, Generic -- ^ @since 4.9.0.0
, Generic1 -- ^ @since 4.9.0.0
)
-- | Used for marking occurrences of 'Word#'
--
-- @since 4.9.0.0
data instance URec Word (p :: k) = UWord { URec Word p -> Word#
uWord# :: Word# }
deriving ( Eq -- ^ @since 4.9.0.0
, Ord -- ^ @since 4.9.0.0
, Show -- ^ @since 4.9.0.0
, Functor -- ^ @since 4.9.0.0
, Generic -- ^ @since 4.9.0.0
, Generic1 -- ^ @since 4.9.0.0
)
-- | Type synonym for @'URec' 'Addr#'@
--
-- @since 4.9.0.0
type UAddr = URec (Ptr ())
-- | Type synonym for @'URec' 'Char#'@
--
-- @since 4.9.0.0
type UChar = URec Char
-- | Type synonym for @'URec' 'Double#'@
--
-- @since 4.9.0.0
type UDouble = URec Double
-- | Type synonym for @'URec' 'Float#'@
--
-- @since 4.9.0.0
type UFloat = URec Float
-- | Type synonym for @'URec' 'Int#'@
--
-- @since 4.9.0.0
type UInt = URec Int
-- | Type synonym for @'URec' 'Word#'@
--
-- @since 4.9.0.0
type UWord = URec Word
-- | Tag for K1: recursion (of kind @Type@)
data R
-- | Type synonym for encoding recursion (of kind @Type@)
type Rec0 = K1 R
-- | Tag for M1: datatype
data D
-- | Tag for M1: constructor
data C
-- | Tag for M1: record selector
data S
-- | Type synonym for encoding meta-information for datatypes
type D1 = M1 D
-- | Type synonym for encoding meta-information for constructors
type C1 = M1 C
-- | Type synonym for encoding meta-information for record selectors
type S1 = M1 S
-- | Class for datatypes that represent datatypes
class Datatype d where
-- | The name of the datatype (unqualified)
datatypeName :: t d (f :: k -> Type) (a :: k) -> [Char]
-- | The fully-qualified name of the module where the type is declared
moduleName :: t d (f :: k -> Type) (a :: k) -> [Char]
-- | The package name of the module where the type is declared
--
-- @since 4.9.0.0
packageName :: t d (f :: k -> Type) (a :: k) -> [Char]
-- | Marks if the datatype is actually a newtype
--
-- @since 4.7.0.0
isNewtype :: t d (f :: k -> Type) (a :: k) -> Bool
isNewtype t d f a
_ = Bool
False
-- | @since 4.9.0.0
instance (KnownSymbol n, KnownSymbol m, KnownSymbol p, SingI nt)
=> Datatype ('MetaData n m p nt) where
datatypeName :: t ('MetaData n m p nt) f a -> String
datatypeName t ('MetaData n m p nt) f a
_ = Proxy n -> String
forall (n :: Symbol) (proxy :: Symbol -> *).
KnownSymbol n =>
proxy n -> String
Evidence bound by a type signature of the constraint type KnownSymbol n
symbolVal (Proxy n
forall {k} (t :: k). Proxy t
Proxy :: Proxy n)
moduleName :: t ('MetaData n m p nt) f a -> String
moduleName t ('MetaData n m p nt) f a
_ = Proxy m -> String
forall (n :: Symbol) (proxy :: Symbol -> *).
KnownSymbol n =>
proxy n -> String
Evidence bound by a type signature of the constraint type KnownSymbol m
symbolVal (Proxy m
forall {k} (t :: k). Proxy t
Proxy :: Proxy m)
packageName :: t ('MetaData n m p nt) f a -> String
packageName t ('MetaData n m p nt) f a
_ = Proxy p -> String
forall (n :: Symbol) (proxy :: Symbol -> *).
KnownSymbol n =>
proxy n -> String
Evidence bound by a type signature of the constraint type KnownSymbol p
symbolVal (Proxy p
forall {k} (t :: k). Proxy t
Proxy :: Proxy p)
isNewtype :: t ('MetaData n m p nt) f a -> Bool
isNewtype t ('MetaData n m p nt) f a
_ = Sing nt -> DemoteRep Bool
forall k (a :: k). SingKind k => Sing a -> DemoteRep k
Instance of class: SingKind of the constraint type SingKind Bool
fromSing (Sing nt
forall k (a :: k). SingI a => Sing a
Evidence bound by a type signature of the constraint type SingI nt
sing :: Sing nt)
-- | Class for datatypes that represent data constructors
class Constructor c where
-- | The name of the constructor
conName :: t c (f :: k -> Type) (a :: k) -> [Char]
-- | The fixity of the constructor
conFixity :: t c (f :: k -> Type) (a :: k) -> Fixity
conFixity t c f a
_ = Fixity
Prefix
-- | Marks if this constructor is a record
conIsRecord :: t c (f :: k -> Type) (a :: k) -> Bool
conIsRecord t c f a
_ = Bool
False
-- | @since 4.9.0.0
instance (KnownSymbol n, SingI f, SingI r)
=> Constructor ('MetaCons n f r) where
conName :: t ('MetaCons n f r) f a -> String
conName t ('MetaCons n f r) f a
_ = Proxy n -> String
forall (n :: Symbol) (proxy :: Symbol -> *).
KnownSymbol n =>
proxy n -> String
Evidence bound by a type signature of the constraint type KnownSymbol n
symbolVal (Proxy n
forall {k} (t :: k). Proxy t
Proxy :: Proxy n)
conFixity :: t ('MetaCons n f r) f a -> Fixity
conFixity t ('MetaCons n f r) f a
_ = Sing f -> DemoteRep FixityI
forall k (a :: k). SingKind k => Sing a -> DemoteRep k
Instance of class: SingKind of the constraint type SingKind FixityI
fromSing (Sing f
forall k (a :: k). SingI a => Sing a
Evidence bound by a type signature of the constraint type SingI f
sing :: Sing f)
conIsRecord :: t ('MetaCons n f r) f a -> Bool
conIsRecord t ('MetaCons n f r) f a
_ = Sing r -> DemoteRep Bool
forall k (a :: k). SingKind k => Sing a -> DemoteRep k
Instance of class: SingKind of the constraint type SingKind Bool
fromSing (Sing r
forall k (a :: k). SingI a => Sing a
Evidence bound by a type signature of the constraint type SingI r
sing :: Sing r)
-- | Datatype to represent the fixity of a constructor. An infix
-- | declaration directly corresponds to an application of 'Infix'.
data Fixity = Prefix | Infix Associativity Int
deriving ( Eq -- ^ @since 4.6.0.0
, Show -- ^ @since 4.6.0.0
, Ord -- ^ @since 4.6.0.0
, Read -- ^ @since 4.6.0.0
, Generic -- ^ @since 4.7.0.0
)
-- | This variant of 'Fixity' appears at the type level.
--
-- @since 4.9.0.0
data FixityI = PrefixI | InfixI Associativity Nat
-- | Get the precedence of a fixity value.
prec :: Fixity -> Int
prec :: Fixity -> Int
prec Fixity
Prefix = Int
10
prec (Infix Associativity
_ Int
n) = Int
n
-- | Datatype to represent the associativity of a constructor
data Associativity = LeftAssociative
| RightAssociative
| NotAssociative
deriving ( Eq -- ^ @since 4.6.0.0
, Show -- ^ @since 4.6.0.0
, Ord -- ^ @since 4.6.0.0
, Read -- ^ @since 4.6.0.0
, Enum -- ^ @since 4.9.0.0
, Bounded -- ^ @since 4.9.0.0
, Ix -- ^ @since 4.9.0.0
, Generic -- ^ @since 4.7.0.0
)
-- | The unpackedness of a field as the user wrote it in the source code. For
-- example, in the following data type:
--
-- @
-- data E = ExampleConstructor Int
-- {\-\# NOUNPACK \#-\} Int
-- {\-\# UNPACK \#-\} Int
-- @
--
-- The fields of @ExampleConstructor@ have 'NoSourceUnpackedness',
-- 'SourceNoUnpack', and 'SourceUnpack', respectively.
--
-- @since 4.9.0.0
data SourceUnpackedness = NoSourceUnpackedness
| SourceNoUnpack
| SourceUnpack
deriving ( Eq -- ^ @since 4.9.0.0
, Show -- ^ @since 4.9.0.0
, Ord -- ^ @since 4.9.0.0
, Read -- ^ @since 4.9.0.0
, Enum -- ^ @since 4.9.0.0
, Bounded -- ^ @since 4.9.0.0
, Ix -- ^ @since 4.9.0.0
, Generic -- ^ @since 4.9.0.0
)
-- | The strictness of a field as the user wrote it in the source code. For
-- example, in the following data type:
--
-- @
-- data E = ExampleConstructor Int ~Int !Int
-- @
--
-- The fields of @ExampleConstructor@ have 'NoSourceStrictness',
-- 'SourceLazy', and 'SourceStrict', respectively.
--
-- @since 4.9.0.0
data SourceStrictness = NoSourceStrictness
| SourceLazy
| SourceStrict
deriving ( Eq -- ^ @since 4.9.0.0
, Show -- ^ @since 4.9.0.0
, Ord -- ^ @since 4.9.0.0
, Read -- ^ @since 4.9.0.0
, Enum -- ^ @since 4.9.0.0
, Bounded -- ^ @since 4.9.0.0
, Ix -- ^ @since 4.9.0.0
, Generic -- ^ @since 4.9.0.0
)
-- | The strictness that GHC infers for a field during compilation. Whereas
-- there are nine different combinations of 'SourceUnpackedness' and
-- 'SourceStrictness', the strictness that GHC decides will ultimately be one
-- of lazy, strict, or unpacked. What GHC decides is affected both by what the
-- user writes in the source code and by GHC flags. As an example, consider
-- this data type:
--
-- @
-- data E = ExampleConstructor {\-\# UNPACK \#-\} !Int !Int Int
-- @
--
-- * If compiled without optimization or other language extensions, then the
-- fields of @ExampleConstructor@ will have 'DecidedStrict', 'DecidedStrict',
-- and 'DecidedLazy', respectively.
--
-- * If compiled with @-XStrictData@ enabled, then the fields will have
-- 'DecidedStrict', 'DecidedStrict', and 'DecidedStrict', respectively.
--
-- * If compiled with @-O2@ enabled, then the fields will have 'DecidedUnpack',
-- 'DecidedStrict', and 'DecidedLazy', respectively.
--
-- @since 4.9.0.0
data DecidedStrictness = DecidedLazy
| DecidedStrict
| DecidedUnpack
deriving ( Eq -- ^ @since 4.9.0.0
, Show -- ^ @since 4.9.0.0
, Ord -- ^ @since 4.9.0.0
, Read -- ^ @since 4.9.0.0
, Enum -- ^ @since 4.9.0.0
, Bounded -- ^ @since 4.9.0.0
, Ix -- ^ @since 4.9.0.0
, Generic -- ^ @since 4.9.0.0
)
-- | Class for datatypes that represent records
class Selector s where
-- | The name of the selector
selName :: t s (f :: k -> Type) (a :: k) -> [Char]
-- | The selector's unpackedness annotation (if any)
--
-- @since 4.9.0.0
selSourceUnpackedness :: t s (f :: k -> Type) (a :: k) -> SourceUnpackedness
-- | The selector's strictness annotation (if any)
--
-- @since 4.9.0.0
selSourceStrictness :: t s (f :: k -> Type) (a :: k) -> SourceStrictness
-- | The strictness that the compiler inferred for the selector
--
-- @since 4.9.0.0
selDecidedStrictness :: t s (f :: k -> Type) (a :: k) -> DecidedStrictness
-- | @since 4.9.0.0
instance (SingI mn, SingI su, SingI ss, SingI ds)
=> Selector ('MetaSel mn su ss ds) where
selName :: t ('MetaSel mn su ss ds) f a -> String
selName t ('MetaSel mn su ss ds) f a
_ = String -> Maybe String -> String
forall a. a -> Maybe a -> a
fromMaybe String
"" (Sing mn -> DemoteRep (Maybe Symbol)
forall k (a :: k). SingKind k => Sing a -> DemoteRep k
Instance of class: SingKind of the constraint type forall a. SingKind a => SingKind (Maybe a)
Instance of class: SingKind of the constraint type SingKind Symbol
fromSing (Sing mn
forall k (a :: k). SingI a => Sing a
Evidence bound by a type signature of the constraint type SingI mn
sing :: Sing mn))
selSourceUnpackedness :: t ('MetaSel mn su ss ds) f a -> SourceUnpackedness
selSourceUnpackedness t ('MetaSel mn su ss ds) f a
_ = Sing su -> DemoteRep SourceUnpackedness
forall k (a :: k). SingKind k => Sing a -> DemoteRep k
Instance of class: SingKind of the constraint type SingKind SourceUnpackedness
fromSing (Sing su
forall k (a :: k). SingI a => Sing a
Evidence bound by a type signature of the constraint type SingI su
sing :: Sing su)
selSourceStrictness :: t ('MetaSel mn su ss ds) f a -> SourceStrictness
selSourceStrictness t ('MetaSel mn su ss ds) f a
_ = Sing ss -> DemoteRep SourceStrictness
forall k (a :: k). SingKind k => Sing a -> DemoteRep k
Instance of class: SingKind of the constraint type SingKind SourceStrictness
fromSing (Sing ss
forall k (a :: k). SingI a => Sing a
Evidence bound by a type signature of the constraint type SingI ss
sing :: Sing ss)
selDecidedStrictness :: t ('MetaSel mn su ss ds) f a -> DecidedStrictness
selDecidedStrictness t ('MetaSel mn su ss ds) f a
_ = Sing ds -> DemoteRep DecidedStrictness
forall k (a :: k). SingKind k => Sing a -> DemoteRep k
Instance of class: SingKind of the constraint type SingKind DecidedStrictness
fromSing (Sing ds
forall k (a :: k). SingI a => Sing a
Evidence bound by a type signature of the constraint type SingI ds
sing :: Sing ds)
-- | Representable types of kind @*@.
-- This class is derivable in GHC with the @DeriveGeneric@ flag on.
--
-- A 'Generic' instance must satisfy the following laws:
--
-- @
-- 'from' . 'to' ≡ 'Prelude.id'
-- 'to' . 'from' ≡ 'Prelude.id'
-- @
class Generic a where
-- | Generic representation type
type Rep a :: Type -> Type
-- | Convert from the datatype to its representation
from :: a -> (Rep a) x
-- | Convert from the representation to the datatype
to :: (Rep a) x -> a
-- | Representable types of kind @* -> *@ (or kind @k -> *@, when @PolyKinds@
-- is enabled).
-- This class is derivable in GHC with the @DeriveGeneric@ flag on.
--
-- A 'Generic1' instance must satisfy the following laws:
--
-- @
-- 'from1' . 'to1' ≡ 'Prelude.id'
-- 'to1' . 'from1' ≡ 'Prelude.id'
-- @
class Generic1 (f :: k -> Type) where
-- | Generic representation type
type Rep1 f :: k -> Type
-- | Convert from the datatype to its representation
from1 :: f a -> (Rep1 f) a
-- | Convert from the representation to the datatype
to1 :: (Rep1 f) a -> f a
--------------------------------------------------------------------------------
-- Meta-data
--------------------------------------------------------------------------------
-- | Datatype to represent metadata associated with a datatype (@MetaData@),
-- constructor (@MetaCons@), or field selector (@MetaSel@).
--
-- * In @MetaData n m p nt@, @n@ is the datatype's name, @m@ is the module in
-- which the datatype is defined, @p@ is the package in which the datatype
-- is defined, and @nt@ is @'True@ if the datatype is a @newtype@.
--
-- * In @MetaCons n f s@, @n@ is the constructor's name, @f@ is its fixity,
-- and @s@ is @'True@ if the constructor contains record selectors.
--
-- * In @MetaSel mn su ss ds@, if the field uses record syntax, then @mn@ is
-- 'Just' the record name. Otherwise, @mn@ is 'Nothing'. @su@ and @ss@ are
-- the field's unpackedness and strictness annotations, and @ds@ is the
-- strictness that GHC infers for the field.
--
-- @since 4.9.0.0
data Meta = MetaData Symbol Symbol Symbol Bool
| MetaCons Symbol FixityI Bool
| MetaSel (Maybe Symbol)
SourceUnpackedness SourceStrictness DecidedStrictness
--------------------------------------------------------------------------------
-- Derived instances
--------------------------------------------------------------------------------
-- | @since 4.6.0.0
deriving instance Generic [a]
-- | @since 4.6.0.0
deriving instance Generic (NonEmpty a)
-- | @since 4.6.0.0
deriving instance Generic (Maybe a)
-- | @since 4.6.0.0
deriving instance Generic (Either a b)
-- | @since 4.6.0.0
deriving instance Generic Bool
-- | @since 4.6.0.0
deriving instance Generic Ordering
-- | @since 4.6.0.0
deriving instance Generic (Proxy t)
-- | @since 4.6.0.0
deriving instance Generic ()
-- | @since 4.6.0.0
deriving instance Generic ((,) a b)
-- | @since 4.6.0.0
deriving instance Generic ((,,) a b c)
-- | @since 4.6.0.0
deriving instance Generic ((,,,) a b c d)
-- | @since 4.6.0.0
deriving instance Generic ((,,,,) a b c d e)
-- | @since 4.6.0.0
deriving instance Generic ((,,,,,) a b c d e f)
-- | @since 4.6.0.0
deriving instance Generic ((,,,,,,) a b c d e f g)
-- | @since 4.12.0.0
deriving instance Generic (Down a)
-- | @since 4.15.0.0
deriving instance Generic SrcLoc
-- | @since 4.15.0.0
deriving instance Generic GeneralCategory
-- | @since 4.15.0.0
deriving instance Generic Fingerprint
-- | @since 4.6.0.0
deriving instance Generic1 []
-- | @since 4.6.0.0
deriving instance Generic1 NonEmpty
-- | @since 4.6.0.0
deriving instance Generic1 Maybe
-- | @since 4.6.0.0
deriving instance Generic1 (Either a)
-- | @since 4.6.0.0
deriving instance Generic1 Proxy
-- | @since 4.6.0.0
deriving instance Generic1 ((,) a)
-- | @since 4.6.0.0
deriving instance Generic1 ((,,) a b)
-- | @since 4.6.0.0
deriving instance Generic1 ((,,,) a b c)
-- | @since 4.6.0.0
deriving instance Generic1 ((,,,,) a b c d)
-- | @since 4.6.0.0
deriving instance Generic1 ((,,,,,) a b c d e)
-- | @since 4.6.0.0
deriving instance Generic1 ((,,,,,,) a b c d e f)
-- | @since 4.12.0.0
deriving instance Generic1 Down
--------------------------------------------------------------------------------
-- Copied from the singletons package
--------------------------------------------------------------------------------
-- | The singleton kind-indexed data family.
data family Sing (a :: k)
-- | A 'SingI' constraint is essentially an implicitly-passed singleton.
class SingI (a :: k) where
-- | Produce the singleton explicitly. You will likely need the @ScopedTypeVariables@
-- extension to use this method the way you want.
sing :: Sing a
-- | The 'SingKind' class is essentially a /kind/ class. It classifies all kinds
-- for which singletons are defined. The class supports converting between a singleton
-- type and the base (unrefined) type which it is built from.
class SingKind k where
-- | Get a base type from a proxy for the promoted kind. For example,
-- @DemoteRep Bool@ will be the type @Bool@.
type DemoteRep k :: Type
-- | Convert a singleton to its unrefined version.
fromSing :: Sing (a :: k) -> DemoteRep k
-- Singleton symbols
data instance Sing (s :: Symbol) where
SSym :: KnownSymbol s => Sing s
-- | @since 4.9.0.0
instance KnownSymbol a => SingI a where sing :: Sing a
sing = Sing a
forall (a :: Symbol). KnownSymbol a => Sing a
Evidence bound by a type signature of the constraint type KnownSymbol a
SSym
-- | @since 4.9.0.0
instance SingKind Symbol where
type DemoteRep Symbol = String
fromSing :: Sing a -> DemoteRep Symbol
fromSing (Sing a
R:SingSymbols a
Evidence bound by a pattern of the constraint type KnownSymbol a
SSym :: Sing s) = Proxy a -> String
forall (n :: Symbol) (proxy :: Symbol -> *).
KnownSymbol n =>
proxy n -> String
Evidence bound by a pattern of the constraint type KnownSymbol a
symbolVal (Proxy a
forall {k} (t :: k). Proxy t
Proxy :: Proxy s)
-- Singleton booleans
data instance Sing (a :: Bool) where
STrue :: Sing 'True
SFalse :: Sing 'False
-- | @since 4.9.0.0
instance SingI 'True where sing :: Sing 'True
sing = Sing 'True
STrue
-- | @since 4.9.0.0
instance SingI 'False where sing :: Sing 'False
sing = Sing 'False
SFalse
-- | @since 4.9.0.0
instance SingKind Bool where
type DemoteRep Bool = Bool
fromSing :: Sing a -> DemoteRep Bool
fromSing Sing a
R:SingBoola a
STrue = Bool
DemoteRep Bool
True
fromSing Sing a
R:SingBoola a
SFalse = Bool
DemoteRep Bool
False
-- Singleton Maybe
data instance Sing (b :: Maybe a) where
SNothing :: Sing 'Nothing
SJust :: Sing a -> Sing ('Just a)
-- | @since 4.9.0.0
instance SingI 'Nothing where sing :: Sing 'Nothing
sing = Sing 'Nothing
forall a. Sing 'Nothing
SNothing
-- | @since 4.9.0.0
instance SingI a => SingI ('Just a) where sing :: Sing ('Just a)
sing = Sing a -> Sing ('Just a)
forall {k} (a :: k). Sing a -> Sing ('Just a)
SJust Sing a
forall k (a :: k). SingI a => Sing a
Evidence bound by a type signature of the constraint type SingI a
sing
-- | @since 4.9.0.0
instance SingKind a => SingKind (Maybe a) where
type DemoteRep (Maybe a) = Maybe (DemoteRep a)
fromSing :: Sing a -> DemoteRep (Maybe a)
fromSing Sing a
R:SingMaybeb a a
SNothing = DemoteRep (Maybe a)
forall a. Maybe a
Nothing
fromSing (SJust Sing a
a) = DemoteRep a -> Maybe (DemoteRep a)
forall a. a -> Maybe a
Just (Sing a -> DemoteRep a
forall k (a :: k). SingKind k => Sing a -> DemoteRep k
Evidence bound by a type signature of the constraint type SingKind a
fromSing Sing a
a)
-- Singleton Fixity
data instance Sing (a :: FixityI) where
SPrefix :: Sing 'PrefixI
SInfix :: Sing a -> Integer -> Sing ('InfixI a n)
-- | @since 4.9.0.0
instance SingI 'PrefixI where sing :: Sing 'PrefixI
sing = Sing 'PrefixI
SPrefix
-- | @since 4.9.0.0
instance (SingI a, KnownNat n) => SingI ('InfixI a n) where
sing :: Sing ('InfixI a n)
sing = Sing a -> Integer -> Sing ('InfixI a n)
forall (a :: Associativity) (n :: Nat).
Sing a -> Integer -> Sing ('InfixI a n)
SInfix (Sing a
forall k (a :: k). SingI a => Sing a
Evidence bound by a type signature of the constraint type SingI a
sing :: Sing a) (Proxy n -> Integer
forall (n :: Nat) (proxy :: Nat -> *).
KnownNat n =>
proxy n -> Integer
Evidence bound by a type signature of the constraint type KnownNat n
natVal (Proxy n
forall {k} (t :: k). Proxy t
Proxy :: Proxy n))
-- | @since 4.9.0.0
instance SingKind FixityI where
type DemoteRep FixityI = Fixity
fromSing :: Sing a -> DemoteRep FixityI
fromSing Sing a
R:SingFixityIa a
SPrefix = DemoteRep FixityI
Fixity
Prefix
fromSing (SInfix Sing a
a Integer
n) = Associativity -> Int -> Fixity
Infix (Sing a -> DemoteRep Associativity
forall k (a :: k). SingKind k => Sing a -> DemoteRep k
Instance of class: SingKind of the constraint type SingKind Associativity
fromSing Sing a
a) (Int# -> Int
I# (Integer -> Int#
integerToInt Integer
n))
-- Singleton Associativity
data instance Sing (a :: Associativity) where
SLeftAssociative :: Sing 'LeftAssociative
SRightAssociative :: Sing 'RightAssociative
SNotAssociative :: Sing 'NotAssociative
-- | @since 4.9.0.0
instance SingI 'LeftAssociative where sing :: Sing 'LeftAssociative
sing = Sing 'LeftAssociative
SLeftAssociative
-- | @since 4.9.0.0
instance SingI 'RightAssociative where sing :: Sing 'RightAssociative
sing = Sing 'RightAssociative
SRightAssociative
-- | @since 4.9.0.0
instance SingI 'NotAssociative where sing :: Sing 'NotAssociative
sing = Sing 'NotAssociative
SNotAssociative
-- | @since 4.0.0.0
instance SingKind Associativity where
type DemoteRep Associativity = Associativity
fromSing :: Sing a -> DemoteRep Associativity
fromSing Sing a
R:SingAssociativitya a
SLeftAssociative = DemoteRep Associativity
Associativity
LeftAssociative
fromSing Sing a
R:SingAssociativitya a
SRightAssociative = DemoteRep Associativity
Associativity
RightAssociative
fromSing Sing a
R:SingAssociativitya a
SNotAssociative = DemoteRep Associativity
Associativity
NotAssociative
-- Singleton SourceUnpackedness
data instance Sing (a :: SourceUnpackedness) where
SNoSourceUnpackedness :: Sing 'NoSourceUnpackedness
SSourceNoUnpack :: Sing 'SourceNoUnpack
SSourceUnpack :: Sing 'SourceUnpack
-- | @since 4.9.0.0
instance SingI 'NoSourceUnpackedness where sing :: Sing 'NoSourceUnpackedness
sing = Sing 'NoSourceUnpackedness
SNoSourceUnpackedness
-- | @since 4.9.0.0
instance SingI 'SourceNoUnpack where sing :: Sing 'SourceNoUnpack
sing = Sing 'SourceNoUnpack
SSourceNoUnpack
-- | @since 4.9.0.0
instance SingI 'SourceUnpack where sing :: Sing 'SourceUnpack
sing = Sing 'SourceUnpack
SSourceUnpack
-- | @since 4.9.0.0
instance SingKind SourceUnpackedness where
type DemoteRep SourceUnpackedness = SourceUnpackedness
fromSing :: Sing a -> DemoteRep SourceUnpackedness
fromSing Sing a
R:SingSourceUnpackednessa a
SNoSourceUnpackedness = DemoteRep SourceUnpackedness
SourceUnpackedness
NoSourceUnpackedness
fromSing Sing a
R:SingSourceUnpackednessa a
SSourceNoUnpack = DemoteRep SourceUnpackedness
SourceUnpackedness
SourceNoUnpack
fromSing Sing a
R:SingSourceUnpackednessa a
SSourceUnpack = DemoteRep SourceUnpackedness
SourceUnpackedness
SourceUnpack
-- Singleton SourceStrictness
data instance Sing (a :: SourceStrictness) where
SNoSourceStrictness :: Sing 'NoSourceStrictness
SSourceLazy :: Sing 'SourceLazy
SSourceStrict :: Sing 'SourceStrict
-- | @since 4.9.0.0
instance SingI 'NoSourceStrictness where sing :: Sing 'NoSourceStrictness
sing = Sing 'NoSourceStrictness
SNoSourceStrictness
-- | @since 4.9.0.0
instance SingI 'SourceLazy where sing :: Sing 'SourceLazy
sing = Sing 'SourceLazy
SSourceLazy
-- | @since 4.9.0.0
instance SingI 'SourceStrict where sing :: Sing 'SourceStrict
sing = Sing 'SourceStrict
SSourceStrict
-- | @since 4.9.0.0
instance SingKind SourceStrictness where
type DemoteRep SourceStrictness = SourceStrictness
fromSing :: Sing a -> DemoteRep SourceStrictness
fromSing Sing a
R:SingSourceStrictnessa a
SNoSourceStrictness = DemoteRep SourceStrictness
SourceStrictness
NoSourceStrictness
fromSing Sing a
R:SingSourceStrictnessa a
SSourceLazy = DemoteRep SourceStrictness
SourceStrictness
SourceLazy
fromSing Sing a
R:SingSourceStrictnessa a
SSourceStrict = DemoteRep SourceStrictness
SourceStrictness
SourceStrict
-- Singleton DecidedStrictness
data instance Sing (a :: DecidedStrictness) where
SDecidedLazy :: Sing 'DecidedLazy
SDecidedStrict :: Sing 'DecidedStrict
SDecidedUnpack :: Sing 'DecidedUnpack
-- | @since 4.9.0.0
instance SingI 'DecidedLazy where sing :: Sing 'DecidedLazy
sing = Sing 'DecidedLazy
SDecidedLazy
-- | @since 4.9.0.0
instance SingI 'DecidedStrict where sing :: Sing 'DecidedStrict
sing = Sing 'DecidedStrict
SDecidedStrict
-- | @since 4.9.0.0
instance SingI 'DecidedUnpack where sing :: Sing 'DecidedUnpack
sing = Sing 'DecidedUnpack
SDecidedUnpack
-- | @since 4.9.0.0
instance SingKind DecidedStrictness where
type DemoteRep DecidedStrictness = DecidedStrictness
fromSing :: Sing a -> DemoteRep DecidedStrictness
fromSing Sing a
R:SingDecidedStrictnessa a
SDecidedLazy = DemoteRep DecidedStrictness
DecidedStrictness
DecidedLazy
fromSing Sing a
R:SingDecidedStrictnessa a
SDecidedStrict = DemoteRep DecidedStrictness
DecidedStrictness
DecidedStrict
fromSing Sing a
R:SingDecidedStrictnessa a
SDecidedUnpack = DemoteRep DecidedStrictness
DecidedStrictness
DecidedUnpack