h"˼       !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~                                                                                                                                                                                             "(c) The University of Glasgow 2015/BSD-style (see the file libraries/base/LICENSE)libraries@haskell.org experimentalportableSafeTSafeT "(c) The University of Glasgow 2003/BSD-style (see the file libraries/base/LICENSE)libraries@haskell.org experimentalportable Trustworthy'(./3589>template-haskellTurn a value into a Template Haskell expression, suitable for use in a splice.template-haskell0Generate a fresh name, which cannot be captured.For example, this: .f = $(do nm1 <- newName "x" let nm2 =  "x" return ( [ nm1] (LamE [VarP nm2] ( nm1))) )will produce the splice f = \x0 -> \x -> x0In particular, the occurrence VarE nm1 refers to the binding VarP nm1', and is not captured by the binding VarP nm2.Although names generated by newName cannot  be captured , they can capture other names. For example, this: g = $(do nm1 <- newName "x" let nm2 = mkName "x" return (LamE [VarP nm2] (LamE [VarP nm1] (VarE nm2))) )will produce the splice g = \x -> \x0 -> x0since the occurrence VarE nm2+ is captured by the innermost binding of x , namely VarP nm1.template-haskellGenerate a capturable name. Occurrences of such names will be resolved according to the Haskell scoping rules at the occurrence site. For example: =f = [| pi + $(varE (mkName "pi")) |] ... g = let pi = 3 in $fIn this case, g is desugared to g = Prelude.pi + 3 Note that mkName" may be used with qualified names: mkName "Prelude.pi" See also   for a useful combinator. The above example could be rewritten using   as f = [| pi + $(dyn "pi") |]template-haskellOnly used internally template-haskell.Underlying untyped Template Haskell expression template-haskellDiscard the type annotation and produce a plain Template Haskell expressionLevity-polymorphic since template-haskell-2.16.0.0. template-haskell4Annotate the Template Haskell expression with a typeThis is unsafe because GHC cannot check for you that the expression really does have the type you claim it has.Levity-polymorphic since template-haskell-2.16.0.0. template-haskellTurn a value into a Template Haskell typed expression, suitable for use in a typed splice.template-haskellA  instance can have any of its values turned into a Template Haskell expression. This is needed when a value used within a Template Haskell quotation is bound outside the Oxford brackets ( [| ... |] or  [|| ... ||]*) but not at the top level. As an example: 2add1 :: Int -> Q (TExp Int) add1 x = [|| x + 1 ||]2Template Haskell has no way of knowing what value x: will take on at splice-time, so it requires the type of x to be an instance of .A  instance must satisfy  $(lift x) D x and $$(liftTyped x) D x for all x, where $(...) and $$(...) are Template Haskell splices. It is additionally expected that  x D   (  x).6 instances can be derived automatically by use of the  -XDeriveLift GHC language extension: {-# LANGUAGE DeriveLift #-} module Foo where import Language.Haskell.TH.Syntax data Bar a = Bar1 a (Bar a) | Bar2 String deriving LiftLevity-polymorphic since template-haskell-2.16.0.0.template-haskellThe  class implements the minimal interface which is necessary for desugaring quotations.The Monad m superclass is needed to stitch together the different AST fragments. is used when desugaring binding structures such as lambdas to generate fresh names.Therefore the type of an untyped quotation in GHC is `Quote m => m Exp`For many years the type of a quotation was fixed to be `Q Exp` but by more precisely specifying the minimal interface it enables the  to be extracted purely from the quotation without interacting with .template-haskellPattern in Haskell given in {}template-haskellA single data constructor.The constructors for  can roughly be divided up into two categories: those for constructors with "vanilla" syntax (, , and 0), and those for constructors with GADT syntax ( and ). The  constructor, which quantifies additional type variables and class contexts, can surround either variety of constructor. However, the type variables that it quantifies are different depending on what constructor syntax is used:If a : surrounds a constructor with vanilla syntax, then the  will only quantify  existential type variables. For example: % data Foo a = forall b. MkFoo a b In MkFoo,  will quantify b , but not a.If a 7 surrounds a constructor with GADT syntax, then the  will quantify all8 type variables used in the constructor. For example: > data Bar a b where MkBar :: (a ~ b) => c -> MkBar a b In MkBar,  will quantify a, b, and c.template-haskell7An abstract type representing names in the syntax tree.s can be constructed in several ways, which come with different name-capture guarantees (see &Language.Haskell.TH.Syntax#namecapture% for an explanation of name capture):the built-in syntax 'f and ''T4 can be used to construct names, The expression 'f gives a Name which refers to the value f currently in scope, and ''T gives a Name which refers to the type T7 currently in scope. These names can never be captured. and  are similar to 'f and ''T respectively, but the Names are looked up at the point where the current splice is being run. These names can never be captured. monadically generates a new name, which can never be captured. generates a capturable name.Names constructed using newName and mkName" may be used in bindings (such as  let x = ... or x -> ...), but names constructed using lookupValueName, lookupTypeName, 'f, ''T may not.template-haskellSince the advent of ConstraintKinds, constraints are really just types. Equality constraints use the  constructor. Constraints may also be tuples of other constraints.template-haskellOne equation of a type family instance or closed type family. The arguments are the left-hand-side type and the right-hand-side result.3For instance, if you had the following type family: type family Foo (a :: k) :: k where forall k (a :: k). Foo @k a = a The  Foo @k a = a* equation would be represented as follows:  (  [ k,  a ( k)]) ( ( ( ''Foo) ( k)) ( a)) ( a) template-haskell(Represents an expression which has type a. Built on top of 6, typed expressions allow for type-safe splicing via:typed quotes, written as  [|| ... ||] where ...4 is an expression; if that expression has type a#, then the quotation has type  ( a)1typed splices inside of typed quotes, written as $$(...) where ...) is an arbitrary expression of type  ( a)Traditional expression quotes and splices let us construct ill-typed expressions:.fmap ppr $ runQ [| True == $( [| "foo" |] ) |]#GHC.Types.True GHC.Classes.== "foo"#GHC.Types.True GHC.Classes.== "foo" error: @ Couldn't match expected type @Bool@ with actual type @[Char]@6 @ In the second argument of @(==)@, namely @"foo"@& In the expression: True == "foo"1 In an equation for @it@: it = True == "foo"3With typed expressions, the type error occurs when  constructing" the Template Haskell expression:3fmap ppr $ runQ [|| True == $$( [|| "foo" ||] ) ||] error:. @ Couldn't match type @[Char]@ with @Bool@" Expected type: Q (TExp Bool)$ Actual type: Q (TExp [Char])5 @ In the Template Haskell quotation [|| "foo" ||]& In the expression: [|| "foo" ||]6 In the Template Haskell splice $$([|| "foo" ||])template-haskellInjectivity annotationtemplate-haskellTo avoid duplication between kinds and types, they are defined to be the same. Naturally, you would never have a type be % and you would never have a kind be , but many of the other constructors are shared. Note that the kind Bool is denoted with , not '. Similarly, tuple kinds are made with , not .template-haskell&Varieties of allowed instance overlap.template-haskell A single deriving! clause at the end of a datatype.template-haskell. => template-haskell forall -> template-haskell T a btemplate-haskell T @k ttemplate-haskell t :: ktemplate-haskell atemplate-haskell Ttemplate-haskell 'Ttemplate-haskell T + Ttemplate-haskell T + TSee  Language.Haskell.TH.Syntax#infixtemplate-haskell (T)template-haskell (,), (,,), etc.template-haskell (#,#), (#,,#), etc.template-haskell (#|#), (#||#), etc.template-haskell ->template-haskell ~template-haskell []template-haskell '(), '(,), '(,,), etc.template-haskell '[]template-haskell (':)template-haskell *template-haskell  Constrainttemplate-haskell  0,1,2, etc.template-haskell _template-haskell ?x :: ttemplate-haskell"A pattern synonym's argument type.template-haskell pattern P {x y z} = ptemplate-haskell pattern {x P y} = ptemplate-haskell pattern P { {x,y,z} } = ptemplate-haskell#A pattern synonym's directionality.template-haskell pattern P x {<-} ptemplate-haskell pattern P x {=} ptemplate-haskell  pattern P x {<-} p where P x = etemplate-haskellAs of template-haskell-2.11.0.0,  has been replaced by .template-haskellAs of template-haskell-2.11.0.0,  has been replaced by .template-haskellAs of template-haskell-2.11.0.0,  has been replaced by .template-haskell C { {-# UNPACK #-} !}atemplate-haskell C Int atemplate-haskell C { v :: Int, w :: a }template-haskell Int :+ atemplate-haskell forall a. Eq a => C [a]template-haskell C :: a -> b -> T b Inttemplate-haskell C :: { v :: Int } -> T b Inttemplate-haskellUnlike  and ,  refers to the strictness that the compiler chooses for a data constructor field, which may be different from what is written in source code. See  for more information.template-haskell C atemplate-haskell C {~}atemplate-haskell C {!}atemplate-haskell C atemplate-haskell C { {-# NOUNPACK #-} } atemplate-haskell C { {-# UNPACK #-} } atemplate-haskell +{ {-# COMPLETE C_1, ..., C_i [ :: T ] #-} }template-haskellCommon elements of  and . By analogy with "head" for type classes and type class instances as defined in 0Type classes: an exploration of the design space, the TypeFamilyHead; is defined to be the elements of the declaration between  type family and where.template-haskell8A pattern synonym's type. Note that a pattern synonym's fully specified type has a peculiar shape coming with two forall quantifiers and two constraint contexts. For example, consider the pattern synonym 'pattern P x1 x2 ... xn = *P's complete type is of the following form pattern P :: forall universals. required constraints => forall existentials. provided constraints => t1 -> t2 -> ... -> tn -> tconsisting of four parts: the (possibly empty lists of) universally quantified type variables and required constraints on them.the (possibly empty lists of) existentially quantified type variables and the provided constraints on them. the types t1, t2, .., tn of x1, x2, .., xn, respectively the type t of , mentioning only universals.Pattern synonym types interact with TH when (a) reifying a pattern synonym, (b) pretty printing, or (c) specifying a pattern synonym's type signature explicitly:/Reification always returns a pattern synonym's fully( specified type in abstract syntax.Pretty printing via   abbreviates a pattern synonym's type unambiguously in concrete syntax: The rule of thumb is to print initial empty universals and the required context as () =>, if existentials and a provided context follow. If only universals and their required context, but no existentials are specified, only the universals and their required context are printed. If both or none are specified, so both (or none) are printed.>When specifying a pattern synonym's type explicitly with  either one of the universals, the existentials, or their contexts may be left empty.See the GHC user's guide for more information on pattern synonyms and their types:  https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/glasgow_exts.html#pattern-synonyms.template-haskellA "standard" derived instancetemplate-haskell -XDeriveAnyClasstemplate-haskell -XGeneralizedNewtypeDerivingtemplate-haskell  -XDerivingViatemplate-haskell { deriving stock (Eq, Ord) }template-haskell { f p1 p2 = b where decs }template-haskell { p = b where decs }template-haskell { data Cxt x => T x = A x | B (T x) deriving (Z,W) deriving stock Eq }template-haskell { newtype Cxt x => T x = A (B x) deriving (Z,W Q) deriving stock Eq }template-haskell { type T x = (x,x) }template-haskell  { class Eq a => Ord a where ds }template-haskell { instance {-# OVERLAPS #-} Show w => Show [w] where ds }template-haskell { length :: [a] -> Int }template-haskell { type TypeRep :: k -> Type }template-haskell -{ foreign import ... } { foreign export ... }template-haskell { infix 3 foo }template-haskell { {-# INLINE [1] foo #-} }template-haskell { data family T a b c :: * }template-haskell { data instance Cxt x => T [x] = A x | B (T x) deriving (Z,W) deriving stock Eq }template-haskell { newtype instance Cxt x => T [x] = A (B x) deriving (Z,W) deriving stock Eq }template-haskell { type instance ... }template-haskell -{ type family T a b c = (r :: *) | r -> a b }template-haskell 3{ type family F a b = (r :: *) | r -> a where ... }template-haskell ({ type role T nominal representational }template-haskell 0{ deriving stock instance Ord a => Ord (Foo a) }template-haskell &{ default size :: Data a => a -> Int }template-haskell{ pattern P v1 v2 .. vn <- p }! unidirectional or { pattern P v1 v2 .. vn = p }! implicit bidirectional or ?{ pattern P v1 v2 .. vn <- p where P v1 v2 .. vn = e } explicit bidirectionalalso, besides prefix pattern synonyms, both infix and record pattern synonyms are supported. See  for detailstemplate-haskell#A pattern synonym's type signature.template-haskell  { ?x = expr }Implicit parameter binding declaration. Can only be used in let and where clauses which consist entirely of implicit bindings.template-haskell p <- etemplate-haskell { let { x=e1; y=e2 } }template-haskell etemplate-haskellx <- e1 | s2, s3 | s4 (in )template-haskell rec { s1; s2 }template-haskell f x { | odd x } = xtemplate-haskell &f x { | Just y <- x, Just z <- y } = ztemplate-haskell +f p { | e1 = e2 | e3 = e4 } where dstemplate-haskell f p { = e } where dstemplate-haskell { x }template-haskell "data T1 = C1 t1 t2; p = {C1} e1 e2template-haskell  { 5 or 'c'}template-haskell { f x }template-haskell  { f @Int }template-haskell %{x + y} or {(x+)} or {(+ x)} or {(+)}template-haskell {x + y}See  Language.Haskell.TH.Syntax#infixtemplate-haskell { (e) }See  Language.Haskell.TH.Syntax#infixtemplate-haskell { \ p1 p2 -> e }template-haskell { \case m1; m2 }template-haskell  { (e1,e2) }The  + is necessary for handling tuple sections. (1,) translates to 'TupE [Just (LitE (IntegerL 1)),Nothing]template-haskell { (# e1,e2 #) }The  + is necessary for handling tuple sections.  (# 'c', #) translates to -UnboxedTupE [Just (LitE (CharL 'c')),Nothing]template-haskell  { (#|e|#) }template-haskell { if e1 then e2 else e3 }template-haskell { if | g1 -> e1 | g2 -> e2 }template-haskell { let { x=e1; y=e2 } in e3 }template-haskell { case e of m1; m2 }template-haskell { do { p <- e1; e2 } }template-haskell !{ mdo { x <- e1 y; y <- e2 x; } }template-haskell  { [ (x,y) | x <- xs, y <- ys ] }3The result expression of the comprehension is the last of the s, and should be a .E.g. translation: [ f x | x <- xs ] CompE [BindS (VarP x) (VarE xs), NoBindS (AppE (VarE f) (VarE x))]template-haskell { [ 1 ,2 .. 10 ] }template-haskell  { [1,2,3] }template-haskell  { e :: t }template-haskell { T { x = y, z = w } }template-haskell { (f x) { z = w } }template-haskell  { static e }template-haskell { _x }This is used for holes or unresolved identifiers in AST quotes. Note that it could either have a variable name or constructor name.template-haskell{ #x } ( Overloaded label )template-haskell{ ?x } ( Implicit parameter )template-haskell f { p1 p2 = body where decs }template-haskell $case e of { pat -> body where decs }template-haskell  { 5 or 'c' }template-haskell { x }template-haskell  { (p1,p2) }template-haskell { (# p1,p2 #) }template-haskell  { (#|p|#) }template-haskell "data T1 = C1 t1 t2; {C1 p1 p1} = etemplate-haskell foo ({x :+ y}) = etemplate-haskell foo ({x :+ y}) = eSee  Language.Haskell.TH.Syntax#infixtemplate-haskell {(p)}See  Language.Haskell.TH.Syntax#infixtemplate-haskell { ~p }template-haskell { !p }template-haskell  { x @ p }template-haskell { _ }template-haskell f (Pt { pointx = x }) = g xtemplate-haskell  { [1,2,3] }template-haskell  { p :: t }template-haskell  { e -> p }template-haskell#Raw bytes embedded into the binary.Avoid using Bytes constructor directly as it is likely to change in the future. Use helpers such as mkBytes$ in Language.Haskell.TH.Lib instead.template-haskellPointer to the datatemplate-haskellOffset from the pointertemplate-haskellNumber of bytes Maybe someday: , bytesAlignement :: Word -- ^ Alignement constraint , bytesReadOnly :: Bool -- ^ Shall we embed into a read-only -- section or not , bytesInitialized :: Bool -- ^ False: only use  to allocate -- an uninitialized regiontemplate-haskellUsed for overloaded and non-overloaded literals. We don't have a good way to represent non-overloaded literals at the moment. Maybe that doesn't matter?template-haskell!A primitive C-style string, type  template-haskellSome raw bytes, type  :template-haskell describes a single instance of a class or type function. It is just a ,, but guaranteed to be one of the following: (with empty []) or  (with empty derived [])template-haskellIn #, is the type constructor unlifted?template-haskellIn , arity of the type constructortemplate-haskellIn , , and , the total number of s. For example, (#|#) has a  of 2.template-haskellIn  and =, the number associated with a particular data constructor. s are one-indexed and should never exceed the value of its corresponding . For example:(#_|#) has  1 (out of a total  of 2)(#|_#) has  2 (out of a total  of 2)template-haskellIn  and ", name of the parent class or typetemplate-haskellObtained from  in the  Monad.template-haskell'Contains the import list of the module.template-haskellObtained from  in the  Monad.template-haskell-A class, with a list of its visible instancestemplate-haskellA class methodtemplate-haskellA "plain" type constructor. "Fancier" type constructors are returned using  or  as appropriate. At present, this reified declaration will never have derived instances attached to it (if you wish to check for an instance, see ).template-haskellA type or data family, with a list of its visible instances. A closed type family is returned with 0 instances.template-haskellA "primitive" type constructor, which can't be expressed with a  . Examples: (->), Int#.template-haskellA data constructortemplate-haskellA pattern synonymtemplate-haskell7A "value" variable (as opposed to a type variable, see ).The  Maybe Dec field contains Just the declaration which defined the variable - including the RHS of the declaration - or else Nothing, in the case where the RHS is unavailable to the compiler. At present, this value is always Nothing: returning the RHS has not yet been implemented because of lack of interest.template-haskellA type variable.The Type field contains the type which underlies the variable. At present, this is always  theName5, but future changes may permit refinement of this.template-haskellUniq5 is used by GHC to distinguish names from each other.template-haskell Variablestemplate-haskellData constructorstemplate-haskellType constructors and classes; Haskell has them in the same name space for now.template-haskell&An unqualified name; dynamically boundtemplate-haskell#A qualified name; dynamically boundtemplate-haskellA unique local nametemplate-haskell&Local name bound outside of the TH ASTtemplate-haskellGlobal name bound outside of the TH AST: An original name (occurrences only, not binders) Need the namespace too to be sure which thing we are namingtemplate-haskellObtained from  and  .template-haskell>Report an error (True) or warning (False), but carry on; use   to stop.template-haskellReport an error to the user, but allow the current splice's computation to carry on. To abort the computation, use  .template-haskell+Report a warning to the user, and carry on.template-haskellRecover from errors raised by  or  .template-haskellLook up the given name in the (type namespace of the) current splice's scope. See %Language.Haskell.TH.Syntax#namelookup for more details.template-haskellLook up the given name in the (value namespace of the) current splice's scope. See %Language.Haskell.TH.Syntax#namelookup for more details.template-haskell looks up information about the . Bool, and reifyType ''Bool returns Type. This works even if there's no explicit signature and the type or kind is inferred.template-haskellreifyInstances nm tys( returns a list of visible instances of nm tys. That is, if nm is the name of a type class, then all instances of this class at the types tys! are returned. Alternatively, if nm is the name of a data family or type family, all instances of this family at the types tys are returned.Note that this is a "shallow" test; the declarations returned merely have instance heads which unify with nm tys(, they need not actually be satisfiable.reifyInstances ''Eq [  2 ``  ''A ``  ''B ] contains the "instance (Eq a, Eq b) => Eq (a, b) regardless of whether A and B themselves implement  reifyInstances ''Show [  ( "a") ]* produces every available instance of  There is one edge case: reifyInstances ''Typeable tys9 currently always produces an empty list (no matter what tys are given).template-haskell reifyRoles nm returns the list of roles associated with the parameters of the tycon nm . Fails if nm cannot be found or is not a tycon. The returned list should never contain .template-haskellreifyAnnotations target2 returns the list of annotations associated with target. Only the annotations that are appropriately typed is returned. So if you have Int and String annotations for the same target, you have to call this function twice.template-haskellreifyModule mod# looks up information about module mod. To look up the current module, call this function with the return value of  .template-haskellreifyConStrictness nm looks up the strictness information for the fields of the constructor with the name nm-. Note that the strictness information that  returns may not correspond to what is written in the source code. For example, in the following data declaration: data Pair a = Pair a a  would return [, DecidedLazy]0 under most circumstances, but it would return [, DecidedStrict] if the  -XStrictData language extension was enabled.template-haskell%Is the list of instances returned by  nonempty?template-haskell2The location at which this computation is spliced.template-haskellThe 1 function lets you run an I/O computation in the  monad. Take care: you are guaranteed the ordering of calls to  within a single ? computation, but not about the order in which splices are run.Note: for various murky reasons, stdout and stderr handles are not necessarily flushed when the compiler finishes running, so you should flush them yourself.template-haskellRecord external files that runIO is using (dependent upon). The compiler can then recognize that it should re-compile the Haskell file when an external file changes.Expects an absolute file path.Notes:ghc -M does not know about these dependencies - it does not execute TH.The dependency is based on file content, not a modification timetemplate-haskellObtain a temporary file path with the given suffix. The compiler will delete this file after compilation.template-haskellAdd additional top-level declarations. The added declarations will be type checked along with the current declaration group.template-haskelltemplate-haskellEmit a foreign file which will be compiled and linked to the object for the current module. Currently only languages that can be compiled with the C compiler are supported, and the flags passed as part of -optc will be also applied to the C compiler invocation that will compile them.0Note that for non-C languages (for example C++) extern C directives must be used to get symbols that we can access from Haskell.To get better errors, it is recommended to use #line pragmas when emitting C files, e.g. {-# LANGUAGE CPP #-} ... addForeignSource LangC $ unlines [ "#line " ++ show (592 + 1) ++ " " ++ show "libraries/template-haskell/Language/Haskell/TH/Syntax.hs" , ... ]template-haskellSame as , but expects to receive a path pointing to the foreign file instead of a  ; of its contents. Consider using this in conjunction with .This is a good alternative to 9 when you are trying to directly link in an object file.template-haskellAdd a finalizer that will run in the Q monad after the current module has been type checked. This only makes sense when run within a top-level splice.The finalizer is given the local type environment at the splice point. Thus  is able to find the local definitions when executed inside the finalizer.template-haskell/Adds a core plugin to the compilation pipeline.addCorePlugin m' has almost the same effect as passing  -fplugin=m to ghc in the command line. The major difference is that the plugin module m must not belong to the current package. When TH executes, it is too late to tell the compiler that we needed to compile first a plugin module in the current package.template-haskellGet state from the  monad. Note that the state is local to the Haskell module in which the Template Haskell expression is executed.template-haskellReplace the state in the  monad. Note that the state is local to the Haskell module in which the Template Haskell expression is executed.template-haskellDetermine whether the given language extension is enabled in the  monad.template-haskell%List all enabled language extensions.template-haskell is an internal utility function for constructing generic conversion functions from types with   instances to various quasi-quoting representations. See the source of  and  for two example usages: mkCon, mkLit and appQ are overloadable to account for different syntax for expressions and patterns; antiQ allows you to override type-specific cases, a common usage is just  const Nothing#, which results in no overloading.template-haskell converts a value to a  representation of the same value, in the SYB style. It is generalized to take a function override type-specific cases; see # for a more commonly used variant.template-haskell is a variant of  in the - type class which works for any type with a   instance.template-haskell converts a value to a  representation of the same value, in the SYB style. It takes a function to handle type-specific cases, alternatively, pass  const Nothing to get default behavior.template-haskell#The name without its module prefix.ExamplesnameBase ''Data.Either.Either"Either"nameBase (mkName "foo")"foo"nameBase (mkName "Module.foo")"foo"template-haskell&Module prefix of a name, if it exists.ExamplesnameModule ''Data.Either.EitherJust "Data.Either"nameModule (mkName "foo")Nothing nameModule (mkName "Module.foo") Just "Module"template-haskellA name's package, if it exists.Examples namePackage ''Data.Either.Either Just "base"namePackage (mkName "foo")Nothing!namePackage (mkName "Module.foo")Nothingtemplate-haskellReturns whether a name represents an occurrence of a top-level variable (), data constructor (%), type constructor, or type class (#). If we can't be sure, it returns  .ExamplesnameSpace 'Prelude.id Just VarNamenameSpace (mkName "id")2Nothing -- only works for top-level variable namesnameSpace 'Data.Maybe.Just Just DataNamenameSpace ''Data.Maybe.MaybeJust TcClsNamenameSpace ''Data.Ord.OrdJust TcClsNametemplate-haskellOnly used internallytemplate-haskell4Used for 'x etc, but not available to the programmertemplate-haskellTuple data constructortemplate-haskellTuple type constructortemplate-haskellUnboxed tuple data constructortemplate-haskellUnboxed tuple type constructortemplate-haskellUnboxed sum data constructortemplate-haskellUnboxed sum type constructortemplate-haskell(Highest allowed operator precedence for  constructor (answer: 9)template-haskellDefault fixity: infixl 9template-haskelltemplate-haskelltemplate-haskelltemplate-haskelltemplate-haskelltemplate-haskelltemplate-haskelltemplate-haskelltemplate-haskelltemplate-haskelltemplate-haskelltemplate-haskelltemplate-haskelltemplate-haskelltemplate-haskelltemplate-haskelltemplate-haskell Produces an   literal from the NUL-terminated C-string starting at the given memory address.template-haskelltemplate-haskelltemplate-haskelltemplate-haskelltemplate-haskelltemplate-haskell  (Eq a, Ord b)template-haskellLine and character positiontemplate-haskell Fresh namestemplate-haskellReport an error (True) or warning (False) ...but carry on; use   to stoptemplate-haskellthe error handlertemplate-haskellaction which may failtemplate-haskellRecover from the monadic  template-haskellhandler to invoke on failuretemplate-haskellcomputation to run      *Quasi-quoting support for Template HaskellSafe$template-haskell5Quasi-quoter for expressions, invoked by quotes like lhs = $[q|...]template-haskell2Quasi-quoter for patterns, invoked by quotes like f $[q|...] = rhstemplate-haskell:Quasi-quoter for declarations, invoked by top-level quotestemplate-haskell/Quasi-quoter for types, invoked by quotes like  f :: $[q|...]template-haskellThe  type, a value q) of this type can be used in the syntax [q| ... string to parse ...|] . In fact, for convenience, a  actually defines multiple quasiquoters to be used in different splice contexts; if you are only interested in defining a quasiquoter to be used for expressions, you would define a  with only 6, and leave the other fields stubbed out with errors.template-haskell takes a  and lifts it into one that read the data out of a file. For example, suppose asmq is an assembly-language quoter, so that you can write [asmq| ld r1, r2 |] as an expression. Then if you define asmq_f = quoteFile asmq<, then the quote [asmq_f|foo.s|] will take input from file "foo.s" instead of the inline text  Safe>!template-haskellReturns   if the document is emptytemplate-haskellAn empty documenttemplate-haskellA ';' charactertemplate-haskellA ',' charactertemplate-haskellA : charactertemplate-haskell A "::" stringtemplate-haskellA space charactertemplate-haskellA '=' charactertemplate-haskell A "->" stringtemplate-haskellA '(' charactertemplate-haskellA ')' charactertemplate-haskellA '[' charactertemplate-haskellA ']' charactertemplate-haskellA '{' charactertemplate-haskellA '}' charactertemplate-haskellWrap document in (...)template-haskellWrap document in [...]template-haskellWrap document in {...}template-haskellWrap document in '...'template-haskellWrap document in "..."template-haskellBesidetemplate-haskellList version of template-haskellBeside, separated by spacetemplate-haskellList version of template-haskell5Above; if there is no overlap it "dovetails" the twotemplate-haskellAbove, without dovetailing.template-haskellList version of template-haskellEither hcat or vcattemplate-haskellEither hsep or vcattemplate-haskell"Paragraph fill" version of cattemplate-haskell"Paragraph fill" version of septemplate-haskellNestedtemplate-haskell "hang d1 n d2 = sep [d1, nest n d2]template-haskell punctuate p [d1, ... dn] = [d1 <> p, d2 <> p, ... dn-1 <> p, dn]//6655Safe template-haskell.Pretty prints a pattern synonym type signature template-haskellPretty prints a pattern synonym's type; follows the usual conventions to print a pattern synonym type compactly, yet unambiguously. See the note on  and the section on pattern synonyms in the GHC user's guide for more information.     Safe{ (template-haskell Use with ;)template-haskell Use with UFtemplate-haskell staticE x = [| static x |]ptemplate-haskellPattern synonym declarationqtemplate-haskellPattern synonym type signaturestemplate-haskellImplicit parameter binding declaration. Can only be used in let and where clauses which consist entirely of implicit bindings. template-haskell*Dynamically binding a variable (unhygenic) template-haskellSingle-arg lambda template-haskellpure the Module at the place of splicing. Can be used as an input for .  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~           !"#$%&'PQRST ML N O() *+,-. /0123 456789:;?@AVUYWXZ [\t]jkl^_`abc rfghdeim nopqsu|}~  vwxyz{    Safeż template-haskellCreate a Bytes datatype representing raw bytes to be embedded into the program/library binary. template-haskellPointer to the datatemplate-haskellOffset from the pointertemplate-haskellNumber of bytes  !"#$%&'()*+,-./01234789:;<=>?@ABCDEFGHIJKLMNOPQRSTUV[\]^_`achjklmopqrstuvwxyz{|}~          !"#$%&'ML N O() *GHI+,F-. /0123 4 789:; BCDE K>?@A ?@ABCDEFGHIJKLMNOPQRSTUV[\]^_`achjklmopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~                                                                                                                                                          fdegostqrv{ BC           template-haskellLanguage.Haskell.TH.Syntax Language.Haskell.TH.Lib.InternalLanguage.Haskell.TH.Quote&Language.Haskell.TH.LanguageExtensionsLanguage.Haskell.TH.PprLibLanguage.Haskell.TH.PprLanguage.Haskell.TH.LibLanguage.Haskell.TH.Lib.Mapdyn pprPatSynType thisModuleLanguage.Haskell.TH sequenceQliftnewNamemkName mkNameG_v mkNameG_d mkNameG_tcmkNameLmkNameSunTypeunTypeQunsafeTExpCoerce liftTypedcharLstringLintegerLintPrimL wordPrimL floatPrimL doublePrimL rationalL stringPrimL charPrimL liftStringlitPvarPtupP unboxedTupP unboxedSumPconPinfixPtildePbangPasPwildPrecPlistPsigPviewPfieldPatmatchclausevarEconElitEappEappTypeEinfixEinfixAppsectionLsectionRlamElamCaseEtupE unboxedTupE unboxedSumEcondEmultiIfEletEcaseEdoEcompEfromE fromThenEfromToE fromThenToElistEsigErecConErecUpdEstaticE unboundVarElabelEimplicitParamVarEmdoEfieldExpguardedBnormalBnormalGEpatGEbindSletSnoBindSparSrecSfunDvalDdataDnewtypeDtySynDclassDinstanceWithOverlapDsigDforImpDpragInlD pragSpecD pragSpecInlD pragSpecInstD pragRuleDpragAnnD dataFamilyDopenTypeFamilyD dataInstD newtypeInstD tySynInstDclosedTypeFamilyDinfixLDinfixRDinfixND roleAnnotDstandaloneDerivWithStrategyD defaultSigDpatSynD patSynSigD pragCompleteDimplicitParamBindDkiSigDcxtnoSourceUnpackednesssourceNoUnpack sourceUnpacknoSourceStrictness sourceLazy sourceStrictnormalCrecCinfixCforallCgadtCrecGadtCbangbangType varBangTypeunidir implBidir explBidir prefixPatSyn infixPatSyn recordPatSynforallT forallVisTvarTconTtupleT unboxedTupleT unboxedSumTarrowTlistTappTappKindTsigT equalityTlitT promotedTpromotedTupleT promotedNilT promotedConsT wildCardTimplicitParamTinfixTnumTyLitstrTyLitplainTVkindedTVnominalRrepresentationalRphantomRinferRstarK constraintKnoSigkindSigtyVarSiginjectivityAnncCallstdCallcApiprim javaScriptunsafesafe interruptiblefunDeptySynEqnquoteExpquotePatquoteDec quoteTyperuleVar typedRuleVar plainInvisTV kindedInvisTVvalueAnnotationtypeAnnotationmoduleAnnotation derivClause specifiedSpec inferredSpecLiftQuoteExpMatchClauseQExpQPatStmtConTypeQTypeDecBangType VarBangTypeFieldExpFieldPatNamePatQFunDepPred TyVarBndrUnitDecsQRuleBndrTySynEqnRoleTExpInjectivityAnnKindOverlap DerivClause DerivStrategyDecs TyVarBndrSpecNoInlineInline InlinableConLikeFunLike AllPhases FromPhase BeforePhase Overlappable OverlappingOverlaps Incoherent stockStrategyanyclassStrategynewtypeStrategy viaStrategyghc-boot-th-8.11.0.20200524GHC.LanguageExtensions.TypeStandaloneKindSignaturesCUSKsImportQualifiedPost StarIsTypeQuantifiedConstraintsNumericUnderscoresEmptyDataDerivingMonadFailDesugaring StrictDataStrictTypeApplicationsStaticPointersNamedWildCardsPartialTypeSignaturesPatternSynonyms EmptyCaseOverloadedLabelsDuplicateRecordFieldsHexFloatLiteralsNegativeLiteralsBinaryLiterals MultiWayIf LambdaCaseTraditionalRecordSyntax RelaxedLayoutNondecreasingIndentationDatatypeContexts!AlternativeLayoutRuleTransitionalAlternativeLayoutRuleExplicitForAllPackageImportsExplicitNamespaces TypeOperatorsImpredicativeTypes RankNTypesLiberalTypeSynonyms PatternGuards TupleSectionsPostfixOperators RecursiveDoGeneralizedNewtypeDerivingMonadComprehensionsTransformListCompParallelListCompRoleAnnotationsKindSignaturesEmptyDataDecls MagicHashExistentialQuantification UnicodeSyntaxFunctionalDependenciesNullaryTypeClassesMultiParamTypeClassesConstrainedClassMethodsFlexibleInstancesFlexibleContextsTypeSynonymInstances DerivingViaDerivingStrategies DeriveLiftDeriveAnyClassDefaultSignatures DeriveGenericDeriveFoldableDeriveTraversable DeriveFunctorAutoDeriveTypeableDeriveDataTypeableStandaloneDeriving ApplicativeDo InstanceSigs DataKinds PolyKindsConstraintKindsRebindableSyntaxBlockArgumentsDoAndIfThenElseNPlusKPatterns GADTSyntaxGADTs ViewPatterns RecordPunsRecordWildCardsDisambiguateRecordFields NumDecimalsOverloadedListsOverloadedStrings TypeInTypeTypeFamilyDependencies TypeFamilies BangPatternsUnliftedNewtypes UnboxedSums UnboxedTuplesAllowAmbiguousTypesScopedTypeVariablesImplicitPreludeImplicitParams QuasiQuotesTemplateHaskellQuotesTemplateHaskellArrowsParallelArrays JavaScriptFFIGHCForeignImportPrimCApiFFIInterruptibleFFIUnliftedFFITypesForeignFunctionInterfaceExtendedDefaultRulesRelaxedPolyRecMonoLocalBinds MonoPatBindsMonomorphismRestrictionUndecidableSuperClassesIncoherentInstancesUndecidableInstancesOverlappingInstancesCpp ExtensionGHC.ForeignSrcLang.Type RawObjectLangAsm LangObjcxxLangObjcLangCxxLangCForeignSrcLang AnnLookupAnnLookupModule AnnLookupNameNominalRRepresentationalRPhantomRInferRTyLitNumTyLitStrTyLitFamilyResultSigNoSigKindSigTyVarSig TyVarBndrPlainTVKindedTV Specificity SpecifiedSpec InferredSpecForallT ForallVisTAppTAppKindTSigTVarTConT PromotedTInfixTUInfixTParensTTupleT UnboxedTupleT UnboxedSumTArrowT EqualityTListTPromotedTupleT PromotedNilT PromotedConsTStarT ConstraintTLitT WildCardTImplicitParamT PatSynArgs PrefixPatSyn InfixPatSyn RecordPatSyn PatSynDirUnidir ImplBidir ExplBidir VarStrictType StrictTypeBangNormalCRecCInfixCForallCGadtCRecGadtCDecidedStrictness DecidedLazy DecidedStrict DecidedUnpackSourceStrictnessNoSourceStrictness SourceLazy SourceStrictSourceUnpackednessNoSourceUnpackednessSourceNoUnpack SourceUnpackCxt AnnTargetModuleAnnotationTypeAnnotationValueAnnotationRuleVar TypedRuleVarPhases RuleMatchPragmaInlineP SpecialisePSpecialiseInstPRulePAnnPLineP CompletePSafetyUnsafeSafe InterruptibleCallconvCCallStdCallCApiPrim JavaScriptForeignImportFExportFTypeFamilyHead PatSynType StockStrategyAnyclassStrategyNewtypeStrategy ViaStrategyFunDValDDataDNewtypeDTySynDClassD InstanceDSigDKiSigDForeignDInfixDPragmaD DataFamilyD DataInstD NewtypeInstD TySynInstDOpenTypeFamilyDClosedTypeFamilyD RoleAnnotDStandaloneDerivD DefaultSigDPatSynD PatSynSigDImplicitParamBindDRangeFromR FromThenRFromToR FromThenToRBindSLetSNoBindSParSRecSGuardNormalGPatGBodyGuardedBNormalBVarEConELitEAppEAppTypeEInfixEUInfixEParensELamELamCaseETupE UnboxedTupE UnboxedSumECondEMultiIfELetECaseEDoEMDoECompE ArithSeqEListESigERecConERecUpdEStaticE UnboundVarELabelEImplicitParamVarELitPVarPTupP UnboxedTupP UnboxedSumPConPInfixPUInfixPParensPTildePBangPAsPWildPRecPListPSigPViewPBytesbytesPtr bytesOffset bytesSizeLitCharLStringLIntegerL RationalLIntPrimL WordPrimL FloatPrimL DoublePrimL StringPrimL BytesPrimL CharPrimLFixityDirectionInfixLInfixRInfixNFixity InstanceDecUnliftedAritySumAritySumAlt ParentName ModuleInfoInfoClassIClassOpITyConIFamilyI PrimTyConIDataConIPatSynIVarITyVarICharPosLoc loc_filename loc_package loc_module loc_startloc_endNameIsAloneAppliedInfixUniq NameSpaceVarNameDataName TcClsName NameFlavourNameSNameQNameUNameLNameGOccNameModulePkgNameModNameunQQuasiqNewNameqReportqRecover qLookupNameqReify qReifyFixity qReifyTypeqReifyInstances qReifyRolesqReifyAnnotations qReifyModuleqReifyConStrictness qLocationqRunIOqAddDependentFile qAddTempFile qAddTopDeclsqAddForeignFilePathqAddModFinalizerqAddCorePluginqGetQqPutQ qIsExtEnabled qExtsEnabledmemcmp newNameIObadIOcounterrunQreport reportError reportWarningrecover lookupNamelookupTypeNamelookupValueNamereify reifyFixity reifyTypereifyInstances reifyRolesreifyAnnotations reifyModulereifyConStrictness isInstancelocationrunIOaddDependentFile addTempFile addTopDeclsaddForeignFileaddForeignSourceaddForeignFilePathaddModFinalizer addCorePlugingetQputQ isExtEnabled extsEnabledtrueName falseName nothingNamejustNameleftName rightName nonemptyNamedataToQa dataToExpQliftData dataToPatQ mkModName modString mkPkgName pkgString mkOccName occStringnameBase nameModule namePackage nameSpacemkNameUmkNameGshowName showName' tupleDataName tupleTypeNameunboxedTupleDataNameunboxedTupleTypeName mk_tup_nameunboxedSumDataNameunboxedSumTypeName maxPrecedence defaultFixityeqBytes compareBytescmpEqthenCmp $fShowName $fOrdName $fQuoteIO $fOrdBytes $fEqBytes $fShowBytes$fLiftSumRep(#||||||#)$fLiftSumRep(#|||||#)$fLiftSumRep(#||||#)$fLiftSumRep(#|||#)$fLiftSumRep(#||#)$fLiftSumRep(#|#)$fLiftTupleRep(#,,,,,,#)$fLiftTupleRep(#,,,,,#)$fLiftTupleRep(#,,,,#)$fLiftTupleRep(#,,,#)$fLiftTupleRep(#,,#)$fLiftTupleRep(#,#)$fLiftTupleRepUnit#$fLiftTupleRep(##)$fLiftLiftedRep(,,,,,,)$fLiftLiftedRep(,,,,,)$fLiftLiftedRep(,,,,)$fLiftLiftedRep(,,,)$fLiftLiftedRep(,,)$fLiftLiftedRep(,)$fLiftLiftedRep()$fLiftLiftedRepVoid$fLiftLiftedRepNonEmpty$fLiftLiftedRep[]$fLiftLiftedRepEither$fLiftLiftedRepMaybe$fLiftAddrRepAddr#$fLiftLiftedRepBool$fLiftWordRepChar#$fLiftLiftedRepChar$fLiftDoubleRepDouble#$fLiftLiftedRepDouble$fLiftFloatRepFloat#$fLiftLiftedRepFloat$fLiftLiftedRepRatio$fLiftLiftedRepNatural$fLiftLiftedRepWord64$fLiftLiftedRepWord32$fLiftLiftedRepWord16$fLiftLiftedRepWord8$fLiftLiftedRepWord$fLiftWordRepWord#$fLiftLiftedRepInt64$fLiftLiftedRepInt32$fLiftLiftedRepInt16$fLiftLiftedRepInt8$fLiftIntRepInt#$fLiftLiftedRepInt$fLiftLiftedRepInteger$fQuasiQ $fMonadIOQ$fQuoteQ$fApplicativeQ $fFunctorQ $fMonadFailQ$fMonadQ $fQuasiIO $fShowInfo$fEqInfo $fOrdInfo $fDataInfo $fGenericInfo $fShowDec$fEqDec$fOrdDec $fDataDec $fGenericDec$fShowPatSynDir $fEqPatSynDir$fOrdPatSynDir$fDataPatSynDir$fGenericPatSynDir $fShowClause $fEqClause $fOrdClause $fDataClause$fGenericClause $fShowBody$fEqBody $fOrdBody $fDataBody $fGenericBody $fShowGuard $fEqGuard $fOrdGuard $fDataGuard$fGenericGuard $fShowStmt$fEqStmt $fOrdStmt $fDataStmt $fGenericStmt $fShowExp$fEqExp$fOrdExp $fDataExp $fGenericExp $fShowRange $fEqRange $fOrdRange $fDataRange$fGenericRange $fShowMatch $fEqMatch $fOrdMatch $fDataMatch$fGenericMatch $fShowPat$fEqPat$fOrdPat $fDataPat $fGenericPat $fShowPragma $fEqPragma $fOrdPragma $fDataPragma$fGenericPragma$fShowDerivClause$fEqDerivClause$fOrdDerivClause$fDataDerivClause$fGenericDerivClause$fShowDerivStrategy$fEqDerivStrategy$fOrdDerivStrategy$fDataDerivStrategy$fGenericDerivStrategy$fShowTySynEqn $fEqTySynEqn $fOrdTySynEqn$fDataTySynEqn$fGenericTySynEqn $fShowForeign $fEqForeign $fOrdForeign $fDataForeign$fGenericForeign$fShowRuleBndr $fEqRuleBndr $fOrdRuleBndr$fDataRuleBndr$fGenericRuleBndr $fShowCon$fEqCon$fOrdCon $fDataCon $fGenericCon$fShowTypeFamilyHead$fEqTypeFamilyHead$fOrdTypeFamilyHead$fDataTypeFamilyHead$fGenericTypeFamilyHead$fShowFamilyResultSig$fEqFamilyResultSig$fOrdFamilyResultSig$fDataFamilyResultSig$fGenericFamilyResultSig $fShowType$fEqType $fOrdType $fDataType $fGenericType$fShowTyVarBndr $fEqTyVarBndr$fOrdTyVarBndr$fDataTyVarBndr$fGenericTyVarBndr$fFunctorTyVarBndr$fShowAnnLookup $fEqAnnLookup$fOrdAnnLookup$fDataAnnLookup$fGenericAnnLookup $fShowRole$fEqRole $fOrdRole $fDataRole $fGenericRole $fShowTyLit $fEqTyLit $fOrdTyLit $fDataTyLit$fGenericTyLit$fShowInjectivityAnn$fEqInjectivityAnn$fOrdInjectivityAnn$fDataInjectivityAnn$fGenericInjectivityAnn$fShowSpecificity$fEqSpecificity$fOrdSpecificity$fDataSpecificity$fGenericSpecificity$fShowPatSynArgs$fEqPatSynArgs$fOrdPatSynArgs$fDataPatSynArgs$fGenericPatSynArgs $fShowBang$fEqBang $fOrdBang $fDataBang $fGenericBang$fShowDecidedStrictness$fEqDecidedStrictness$fOrdDecidedStrictness$fDataDecidedStrictness$fGenericDecidedStrictness$fShowSourceStrictness$fEqSourceStrictness$fOrdSourceStrictness$fDataSourceStrictness$fGenericSourceStrictness$fShowSourceUnpackedness$fEqSourceUnpackedness$fOrdSourceUnpackedness$fDataSourceUnpackedness$fGenericSourceUnpackedness$fShowAnnTarget $fEqAnnTarget$fOrdAnnTarget$fDataAnnTarget$fGenericAnnTarget $fShowPhases $fEqPhases $fOrdPhases $fDataPhases$fGenericPhases$fShowRuleMatch $fEqRuleMatch$fOrdRuleMatch$fDataRuleMatch$fGenericRuleMatch $fShowInline $fEqInline $fOrdInline $fDataInline$fGenericInline $fShowSafety $fEqSafety $fOrdSafety $fDataSafety$fGenericSafety$fShowCallconv $fEqCallconv $fOrdCallconv$fDataCallconv$fGenericCallconv $fShowFunDep $fEqFunDep $fOrdFunDep $fDataFunDep$fGenericFunDep $fShowOverlap $fEqOverlap $fOrdOverlap $fDataOverlap$fGenericOverlap $fShowLit$fEqLit$fOrdLit $fDataLit $fGenericLit $fDataBytes$fGenericBytes $fEqFixity $fOrdFixity $fShowFixity $fDataFixity$fGenericFixity$fEqFixityDirection$fOrdFixityDirection$fShowFixityDirection$fDataFixityDirection$fGenericFixityDirection$fShowModuleInfo$fEqModuleInfo$fOrdModuleInfo$fDataModuleInfo$fGenericModuleInfo $fShowLoc$fEqLoc$fOrdLoc $fDataLoc $fGenericLoc $fDataName$fEqName $fGenericName$fDataNameFlavour$fEqNameFlavour$fOrdNameFlavour$fShowNameFlavour$fGenericNameFlavour $fEqNameSpace$fOrdNameSpace$fShowNameSpace$fDataNameSpace$fGenericNameSpace $fShowOccName $fEqOccName $fOrdOccName $fDataOccName$fGenericOccName $fShowModule $fEqModule $fOrdModule $fDataModule$fGenericModule $fShowPkgName $fEqPkgName $fOrdPkgName $fDataPkgName$fGenericPkgName $fShowModName $fEqModName $fOrdModName $fDataModName$fGenericModName QuasiQuoter quoteFileDocPprMpprNamepprName' to_HPJ_DocisEmptyemptysemicommacolondcolonspaceequalsarrowlparenrparenlbrackrbracklbracerbracetextptextcharintintegerfloatdoublerationalparensbracketsbracesquotes doubleQuotes<>hcat<+>hsep$$$+$vcatcatsepfcatfsepnesthang punctuate $fMonadPprM$fApplicativePprM $fFunctorPprM $fShowPprMPprFlag pprTyVarBndrTypeArgTANormalTyArg ForallVisFlag ForallVis ForallInvisPprpprppr_list Precedence nestDepthappPrecopPrecunopPrecsigPrecnoPrecparensIfpprintppr_sig pprFixity pprPatSynSig pprPrefixOccisSymOcc pprInfixExppprExp pprFields pprMaybeExp pprMatchPat pprGuardedpprBodypprLit bytesToString pprStringpprPatppr_decppr_deriv_strategy ppr_overlapppr_data ppr_newtypeppr_deriv_clause ppr_tySyn ppr_tf_head ppr_bndrscommaSepApplied pprForall pprForallVis pprForall' pprRecFields pprGadtRHSpprVarBangType pprBangTypepprVarStrictType pprStrictType pprParendType pprUInfixTpprParendTypeArgisStarTpprTyApp fromTANormal pprFunArgTypesplitpprTyLitpprCxt ppr_cxt_preds where_clause showtextl hashParens quoteParenscommaSep commaSepWithsemiSepunboxedSumBarsbar$fPprLoc $fPprRange $fPprRole $fPprTyLit $fPprType$fPprDecidedStrictness$fPprSourceStrictness$fPprSourceUnpackedness $fPprBang$fPprPatSynArgs$fPprPatSynDir$fPprCon $fPprClause $fPprRuleBndr $fPprPhases$fPprRuleMatch $fPprInline $fPprPragma $fPprForeign$fPprInjectivityAnn$fPprFamilyResultSig $fPprFunDep$fPprDec$fPprPat$fPprLit $fPprMatch $fPprStmt$fPprExp$fPprModuleInfo $fPprModule $fPprInfo $fPprName$fPpr[] $fPprTypeArg$fPprTyVarBndr$fPprFlagSpecificity $fPprFlag()$fShowForallVisFlagDerivStrategyQFamilyResultSigQ PatSynArgsQ PatSynDirQ TySynEqnQ RuleBndrQ FieldExpQVarStrictTypeQ StrictTypeQ VarBangTypeQ BangTypeQBangQSourceUnpackednessQSourceStrictnessQRangeQStmtQGuardQBodyQClauseQMatchQ DerivClauseQPredQCxtQTyLitQKindQConQDecQTExpQ FieldPatQInfoQ bytesPrimLuInfixPparensPfromR fromThenRfromToR fromThenToRnormalGpatGparensEuInfixElam1E arithSeqEstringE instanceD pragLineDstandaloneDerivDuInfixTparensTclassPequalPisStrict notStrictunpacked strictType varStrictTypevarKconKtupleKarrowKlistKappKappsEmkBytesMaplookupinsertbase GHC.MaybeJustMaybeghc-primGHC.PrimAddr#Control.Monad.FailfailNothing GHC.ClassesEqGHC.BaseString Data.DataData GHC.TypesTrue