Multiple Home Packages for GHC

Personal Information
Name: Hannes Siebenhandl

IRC Freenode: fendor

Github: https://github.com/fendor
Mail: power.walross@gmail.com

City: Vienna

Abstract

Haskell tooling has improved considerably over the last year. Haskell IDE Engine
was able to build a user-base that is happy with the feature set. Moreover,
competing projects have been created to explore different design spaces. With
the rise of these tools, certain limitations became apparent in the GHC API. For
example, it is complicated to propagate updates between dependent packages.

In this proposal, I intend to enable GHC and GHCi to work with multiple
packages at once. Most importantly to the end user, this allows development
of multiple packages in GHCi. There are other workflows which can benefit
from such functionality, such as incremental compilation and Haskell Language
Server.

About me

I have started contributing to Haskell IDE Engine over a year ago. Since then I
have contributed a great amount to the project and become co-maintainer of the
project hie-bios which is currently the interface between GHC API and various
Language Servers, such as Haskell IDE Engine and ghcide. Additionally, I have
contributed to Cabal by implementing the show-build-info command.

At the time of this writing, I am doing my master’s degree in software engineering
at the Vienna University of Technology.

Problem Statement

The main motivation for this proposal is to help IDEs provide a seamless
developer experience. Currently, two of the bigger IDE projects in Haskell
are ghcide and Haskell IDE Engine. Both of these projects aim to support a
workflow where developers can work on multiple packages, such as a package’s
library and executable at the same time. The work-force behind it is GHC itself,
which is responsible for actually compiling a user’s source files. Currently when
working in a single GHC session, a so-called HscEnv, only a single package can
be compiled at a time. The session is then saved in case the package changes and


https://hackage.haskell.org/package/hie-bios
https://github.com/haskell/haskell-ide-engine
https://github.com/digital-asset/ghcide
https://github.com/haskell/cabal/pull/6108
https://github.com/digital-asset/ghcide
https://github.com/haskell/haskell-ide-engine
https://hackage.haskell.org/package/ghc-8.6.5/docs/HscTypes.html#t:HscEnv

needs to be re-compiled. To work around this limitation, Haskell IDE Engine
decided to maintain one HscEnv per package to load. While it is wasteful to have
information, such as compilation artefacts, duplicated this works reasonably well
in practice. However, a serious drawback of this approach is, that if a user works
on two packages at the same time, where one depends on the other and there are
changes to the package which others depend on, Haskell IDE Engine possesses
no knowledge that the other package needs to be recompiled as well. This leads
to Haskell IDE Engine showing outdated documentation and diagnostics. The
project ghcide explores a different design space than Haskell IDE Engine, and
is based on the concept of the shake library which is comparable to a Makefile
and was recently adopted as a build-tool for GHC itself. It mirrors certain parts
of the GHC compilation process and maintains its own module graph which
enables reloading modules that actually need to be updated when a source file
changes. At the time of this writing, ghcide only provides experimental support
for loading multiple packages at once. Multiple HscEnv are avoided by tricking
the compiler into thinking that all the local packages, are actually part of the
same package by setting all packages’ identifier to a fake unit-id. A disadvantage
of this is that GHC needs to be tricked in order to provide what ghcide needs
and that parts of the GHC API need to be re-implemented, which has a higher
maintenance cost.

Another motivation is to speed up development time with GHCi. For example
assuming a developer is developing a package, e.g. an executable, by loading
the package into GHCi. After implementing features, they need to fix a bug in
some of the packages the executable depends on. After fixing it a simple reload
of the executable package is not enough. GHCi does not notice that one of the
dependencies has been modified. To apply the changes, the whole GHCi session
needs to be restarted.

Implementing this proposal will help to solve the problems of IDEs stated above,
and improve development speed when working with GHCi. Maintaining multiple
GHC sessions will no longer be necessary, as the components will be put into
the same session where GHC will take care of the rest. Custom tricks to make the
compiler do what the developers want will no longer be necessary. Restarting
GHCi will also no longer be necessary, because developers will be able to load
multiple components at once, with GHCi being able to reload the modules that
need reloading.

Tasks
Familiarise with GHC code-base

GHC has a large and complex code-base and it is probably impossible to prepare
for the planned project perfectly. However, I plan to spend some time in the
code-base, read documentation and work on simpler issues to familiarise myself
with the project structure and development cycle.


https://hackage.haskell.org/package/shake
https://hackage.haskell.org/package/ghc-8.6.5/docs/HscTypes.html#t:ModuleGraph
https://github.com/mpickering/ghcide/tree/wip/multi-rebase

Implement Multiple Home Modules

The main part of this proposed project is modifying the type of HscEnv. Cur-
rently, this holds one set of dynamic compilation flags and one value of Home
Package Table (HPT). The dynamic compilation flags can be different for every
package to be loaded, for example the optimisation level can be different. To lift
this limitation, the dynamic compilation flag within a HscEnv is replaced by a
map from a unit-id (used to identify packages) to a tuple of dynamic compilation
flags and a HPT. This makes it possible to load multiple packages into the
same HscEnv. This approach is not without its difficulties, when two packages
expose a module with the same name, GHC needs to be able to tell them apart.
Avoiding this can be done by resolving imports in the Home Package Table.

This task has already been started in the PR 1935. As some time has passed
since the initial PR, I expect that it needs some adjustments.

Rebasing the changes and finishing off the implementation is the first step for
this project.

This task is absolutely required for this project. Estimated time: 6 weeks.

Implement a suitable CLI

Since every package may have a different set of dynamic compilation flags, GHC
itself needs to be made aware of this. Currently, you may pass only a single set
of dynamic compilation flags for the current package to compile. This limitation
needs to be lifted to enable tools such as Cabal and Stack to load multiple
packages at once.

Since new feature requests go through the GHC proposal process, it will be
neccessary to get the proposed changes accepted. There already exists a write-up
of the proposed changes in PR #263. However, the write-up did not specify
a suitable CLI for Multiple Home Packages, yet. Therefore, I will push a CLI
design and implement it, once it reaches consensus.

One goal of the CLI is for it to remain backwards-compatible. This makes a clean
design more diffcult, because currently GHC supports that dynamic compilation
flags are interleaved with flags that are unrelated to compilation of the package.
To illustrate, assume the following invocation of GHC:

ghc -i. -v -02 Lib.hs

This informs GHC to be verbose (-v) and compile the module Lib.hs with
optimisation level two (-02) and adds an include path for module imports (-1.).
As can be seen, the dynamic compilation flags can be interleaved with flags that
affect GHC. This needs to work after implementing this proposal as well.

We propose that this behaviour is preserved and add an alternate CLI format:

--package-flags <unit-id> {<dynamic compilation flags>, ...}


https://hackage.haskell.org/package/ghc-8.6.5/docs/HscTypes.html#t:HscEnv
https://hackage.haskell.org/package/ghc-8.6.5/docs/DynFlags.html#t:DynFlags
https://hackage.haskell.org/package/ghc-8.6.5/docs/HscTypes.html#t:HomePackageTable
https://hackage.haskell.org/package/ghc-8.6.5/docs/HscTypes.html#t:HomePackageTable
https://gitlab.haskell.org/ghc/ghc/merge_requests/935
https://github.com/ghc-proposals/ghc-proposals
https://github.com/ghc-proposals/ghc-proposals/pull/263

It informs GHC for which package (identified by a unit-id) the dynamic compi-
lation flags are. This flag can be repeated for each <unit-id> and the options
ought to be merged with later entries overriding newer ones. Additionally, pro-
viding the --package-flags <unit-id> flag implies the flag ——this-unit-id
<unit-id>.

The proposed CLI format would be incompatible with the previous format, e.g. it
is an error to provide both types of arguments, e.g.
ghc -i. -v --package-flags unitl -02 Lib

shows an error message. This is intended to force users to be more strict about
their arguments and to avoid potential confusion about what such invocations
should actually do. It would be reasonable to assume that you can have global
compilation flags which apply to all packages and compilation flags that apply
to only a single package. We think that explicitly setting common arguments
for each package is more clear and avoids users mixing up the new CLI with the
old one.

This task can likely take place in parallel with other tasks, but might take a
considerable amount of time since there is waiting for feedback involved.

This task is absolutely required for this project. Estimated time: 3 weeks

Modify cabal to make use Multiple Home Packages

I plan to put the newly implemented feature to good use and extend the cabal
repl command to be able to load multiple components at once. An example
call might look like this:

cabal repl lib:packages exe:package
to load the library component of a package and an associated executable at once.

This task is optional and nice to have. Estimated time: 2 weeks

Modify stack to make use Multiple Home Packages

As of the issue 110827, the build-tool stack is already implementing the proposal’s
feature. However, since they have no support from GHC, the following problems
can not be solved:

o Loading multiple packages fails if two of them expose the same module.
« A GHCi session manages only a single set of compilation flags, but each
package might be compiled with different ones.

These restrictions would be mitigated by this project, and can be implemented
in stack.

This task is optional and nice to have. Estimated time: 2 weeks


https://gitlab.haskell.org/ghc/ghc/issues/10827
https://docs.haskellstack.org/en/stable/README/

Related Work

The work of Daniel Gréber from the Google Summer Of Code 2019 is related to
this proposal. It mitigated the need to have only one GHC session per process.
This proposal now adds the possibility to have multiple packages per session,
increasing efficiency and improving the user experience. It is therefore a natural
extension of the existing work.


http://dxld.at/gsoc19.pdf

	Multiple Home Packages for GHC
	Personal Information
	Abstract
	About me
	Problem Statement
	Tasks
	Familiarise with GHC code-base
	Implement Multiple Home Modules
	Implement a suitable CLI
	Modify cabal to make use Multiple Home Packages
	Modify stack to make use Multiple Home Packages

	Related Work


